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STRUCTURALRESPONSETO INFLIGHT ACOUSTIC

AND AERODYNAMICENVIRONMENTS

By K. L. Chandiramani, S. E. Widnall, R. H. Lyon,
and P. A. Franken

PREFACE

This report presents procedures for estimating some

important classes of inflight acoustic and fluctuating aero-

dynamic environments and resulting surface vibration levels

at high frequencies experienced by major skin segments of a

typical launch vehicle. This task is divided into three
broad steps:

i) study of the environments

2) study of structural components

3) study of the interaction between the two.

Step i: Inflight environments are classified and studied in

Section I. Procedures are presented for adequate representation

and estimation of those aspects of the environments which enter

directly into the interactions with the structural components.

The approach here is partly theoretical, partly empirical.

Extensive use is made of recent laboratory and inflight data.

The types of environment treated are: acoustic noise from engines

during lift-off; surface pressure fluctuations under turbulent

boundary layers during subsonic, transonic, and supersonic flight

regimes; smooth flow versus separated flow; shock-induced

separation; wake impingement, and oscillating shocks.

Step 2: In Section 2, various dynamical properties of two

idealized structures, a cylinder and a flat plate, are presented.

In order to handle most situations of interest, the presentation

is made general enough to apply to an orthotropic and fluid-

loaded structure. The dynamical properties discussed are:

pressure-to-velocity wave admittance, modes and representation

of "modal oscillators," resonance frequencies of modes, modal

density, radiation resistance of modes and resulting radiation

loss factor.



Step 3: Interactions between the fluctuating environments and

structures are studied in Section 3. The approach is statistical.

The final goal of each calculation is an estimate of average

(mean-squared) values of surface acceleration and stress level in

frequency bands. This response estimate, in most cases, pertains

to high-frequency (multimodal)resonant and "coincident" vibration.

However, in one case (oscillating shock) it has been necessary to

pay individual attention to the first few modes, which contribute

most of the response.

The work presented in this report was developed with the

following two objectives in mind:

I) The final estimates developed should be in more or less

closed form, so that the effect of various input parameters can

be easily appraised, and so that detailed calculations (such as

numerical integration or numerical solution of a differential

equation) are not necessary for the final predictions.

2) The input parameters themselves should be as few as

possible and easily related to trajectory and geometric parameters.

Some examples of the choices dictated by the above criteria

are: selection of a fairly simple (but still realistic) correlation

model for the pressure fluctuations under a turbulent boundary

layer, use of thin shell theory, and ignoring of flutter-type

interaction between the vibrating structure and the turbulent

boundary layer. The present results, therefore, should be looked

upon as a basic system of simple solutions, which are comprehensive

enough to set some preliminary design specifications and are

intelligible enough so that an intuitive understanding of the

results can be gained.



SECTION I

INFLIGHT ACOUSTIC AND FLUCTUATING AERODYNAMICENVIRONMENTS

i.i Introduction

In this section we classify and review some important

acoustic and aerodynamic noise environments experienced by a

typical launch vehicle. Our aim is to study those aspects of
the environments which enter directly into interactions with

the structural components of the vehicle. Some of these

centrally important aspects are: the range of trajectory and
geometric parameters over which a particular type of environment

is manifest, the over-all mean-squared value of the associated

pressure fluctuations experienced by different sections of the
vehicle surface, and the frequency distribution of this over-all
level. To estimate such parameters, we have made extensive use

of recent laboratory and flight data.
The noise environments can be broadly classified as the

acoustic noise (associated with rocket Jet exhaust stream),

which dominates during or shortly after vehicle lift-off, and

the aerodynamic noise which dominates during the rest of the

trajectory. Sections 1.2 and 1.3 describe these noise sources.
In Section 1.4 mathematical models for appropriate representation
of these noise sources are described. These models will be used

later for response analyses.

1.2 Acoustic Noise During Lift-0ff

1.2.1 Introduction . - The time history of noise

measurement on a rocket-propelled launch vehicle generally shows

a maximum value during or shortly after vehicle lift-off. The

source of this noise is the rocket jet exhaust stream.

It has not been possible to predict this noise level by

analyzing the fluid dynamics and the thermod_ tics of the

exhaust stream flow. Therefore, in this secti_.i, we shall give

3



a very brief and qualitative description of the exhaust flow

characteristics and the mechanisms by which flow fluctuations

generate noise. For the purpose of estimating the noise levels

during lift-off, we shall describe some well-establlshed scaling

laws.

1.2.2 Mechanisms of Noise Generation by Flow Fluctuations. -

Suppose that a volume element in a fluid medium suffers alter-

nate expansion and compression. If the frequency of this volume

change is high enough, compression and expansion waves will be

induced in the surrounding fluid medium, these waves will travel

away from the source, and thus sound will be radiated. Such a

volume change can be caused by local addition and subtraction of

mass or heat In the fluid. Such a source of sound is called

a monopole.

A dipole source is formed by two monopole sources which

lie side by side, and are of opposite phase. The primary motion

transmitted to the surrounding fluid medium by a dipole source

is translation or acceleration. This type of source can be

generated by a net force oscillating across a small closed surface

in the fluid medium. A dipole is a much less efficient radiator

of sound than a monopole. The sound field generated by a dipole

at large distances results from the residual compression and

expansion of the fluid surrounding the dipole.

A quadrupole source, in turn, is formed by two dipole

sources which lle slde by slde and which are completely out of

phase. The primary motion transmitted to the fluid is distortion.

A quadrupole Is generated by net stress fluctuations. The

residual compression and expansion of the fluid medium is even

smaller than In the case of a dipole. Thus a quadrupole is a

less efficient generator of sound than a dipole or a monopole.

1.2.3 Noise Sources in Turbulence. - Lighthlll i_ 2 / was

the first to show that turbulence behaves as a distribution of

quadrupole sources of sound. From the basic equations

4



describing the fluid dynamics and the thermodynamics of the

turbulent flow, he showed that the total stress tensor TiT

for the flow gives rise to quadrupole sources of sound.

Turbulence in Mean Flow Fields. - In many cases of

practical interest, turbulence is generated within the average

flow field. Very often, the mean flow field has a sharp

velocity gradient, as in the case of boundary layer flow or jet

flow. The mean flow gradient tends to enhance the quadrupole

radiation and to bias the quadrupole source term, and the

resulting radiation is highly directional _-/.

If a rigid body (or wall) is present in the turbulent flow,

the local pressure fluctuations on the solid surface can

constitute dipole sources of sound 3-/ Dipole sources are also

obtained by reflection and diffraction of sound generated by

quadrupole sources far away from the rigid surface.

Far Field_ Near Field_ Geometric Field. - For turbulence

in a mean flow field, if _ is a typical length scale (say, the

dimension indicating the extent of the shear layer) and V is a
o

typical velocity (free-stream velocity), then, aside from

numerical factors, the mean-squared pressures for monopole,

dipole and quadrupole sources are given by:

n

p2/q2 ~ (_/r)2, Monopole (i)

m

p2/q2 ~ (_/r)4 + (_/r)2 Mo 2, Dipole (2)

p2/q2 ~ (_/r)6 2 + ( /r)2M 4, Quadrupole (3)+ ( /r)4Mo o



where

and

q = PVo2/2 is the dynamic pressure

p is the fluid density

r is the distance from source to observation point

is the Mach number corresponding to Vo, M° = Vo/CM o

c is the sound speed.

Therefore, for all these sources, at large distance r, the

mean-squared pressure varies as i/r 2. This is the "far field"

or the "radiation field"; the pressure propagates as sound, and

the compressibility effects in the fluid medium become important.

Closer to the source, mean-squared pressure decreases more

sharply with increase in distance (as I/r 4 or i/r6). This, then,

is the "near field" or "induction field." In this range, com-

pressibility effects lose significance.

In case of noise from a Jet, at large distances from the

jet all the noise sources in the jet stream appear to be concen-

trated within a narrow solid angle. The cumulative effect of

these sources becomes that of a point source, and the mean-

squared pressure varies as i/r 2. At smaller distances, however,

even though the contribution to the mean-squared pressure from

each individual source varies inversely as the square of the

distance from the source, the total pressure does not follow

the same law. This is because the spatial distribution of the

sources in the jet stream becomes significant in this range.

The noise field in this range is called the "geometric field."

In classical optics, this region is known as the Fresnel zone.

The noise field on a typical launch vehicle during lift-off

is a "geometric field" induced by sources in the rocket Jet

exhaust stream. During flight, the noise field on the vehicle

due to turbulent boundary layer or other flow conditions, is a

"near field." Before we can estimate vibration response of

6



vehicle components, we must estimate, as far as possible,

statistical properties of these noise (that is, pressure) fields

on the vehicle surface under different environmental conditions.

1.2.4 Jet Noise, Order-of-Magnitude Analysis

Subsonic Jet. - Consider a jet with pressure ratio

• is then sub-less than the critical The exhaust velocity V °

sonic. We shall postpone the description of the actual flow

characteristics. Here we simply comment on some important

dimensional relations.

The mean-squared pressure in the far radiation field of

the jet, due to the quadrupole sources in the jet stream, is

given by relation (3).

Mo 4
2 2

p ~ q (A/r 2) , (4)

where A, the jet exit area, is taken to be proportional to _2.

Since the total acoustic power radiated Hra d is proportional

-_ /pc, and since the mechanical power Hmech is pA Vo3/2 ,to p r2

we have

Hrad/Hmech ~ Mo5 (5)

This result leads to the famous 8th-power law dependence,

which we may now write as

Era d = 6 x lO-5(pA/2)(VoS/c5), (6)

the numerical constant being determined by measurement.

7



For the Jet impinging on a rigid surface, dipole sources

dominate. For that case, we can show similarly that the

radiated power varies as the sixth power of the impingement

velocity.

Supersonic Jet. - Relations (5) and (6) are valid

only for pressure ratios less than the critical. For higher

pressure ratios, the jet is supersonic relative to the sound

velocity in the gas efflux. Use of relation (5) in these cases

would give erroneous results, since it predicts that all the

power in the Jet goes into sound. It turns out that, for high-

pressure-ratio jets, the radiated power becomes a constant

fraction, roughly 0.25%, of the mechanical power. Consequently,

the Mo5 dependence in relation (5) disappears, and _rad turns

out to be

Hrad = 0.0025 (pA/2) Vo3 (7)

1.2.5 A Qualitative Description of the Exhaust Flow
h /

Stream *-/. - Present-day rocket engines for launch vehicles

are usually designed with pressure ratios higher than the critical

value. Consequently, the jet exhaust stream is supersonic rela-

tive to the sound velocity in the gas efflux. The associated

Mach number lies in the range of 5 to 8. The detailed picture

of the flow conditions in the exhaust stream is very complicated

indeed. In the region of the exhaust stream close to the rocket

exhaust nozzle, the flow is supersonic, characterized by extreme

velocity gradients and slowly expanding turbulent shear layer.

Also, there are temperature inhomogeneities due to rough burning

and mixing, and a complicated pattern of shock waves. The

supersonic flow is rapidly decelerated, so that, i0 to 30 nozzle

8



diameters downstream, the flow becomes subsonic. This subsonic

flow is characterized by moderate velocity gradients and

intense turbulence 4-/.

One source of noise from this complex flow field is the

highly directional, intense, Mach wave emission generated by

supersonically convected turbulent eddies. However, for a

vehicle standing on a launch pad with its engine firing, a

second major source of the noise field on the vehicle surface

is likely to be the sound generated by highly turbulent (and

usually subsonic) flow impinging on the launch pad. Such sound,

being dipole-induced, probably competes effectively with the

quadrupole sound. It has a directional maximum normal to the

surface on which the flow is impinging, but will rapidly

disappear as the vehicle leaves the launch pad. As discussed

before, the power (and the mean-squared pressure) radiated would

be proportional to the sixth power of the impingement velocity.

Since the turbulent scales range from the very large values

associated with the low-speed part of the flow moving away from

the impingement area, to the small values characteristic of the

supersonic shear-layer thickness, the associated acoustic
;,/

spectrum must exhibit a wide frequency range _-/ .

1.2.6 Properties of the Noise Field on a Launch Vehicle. -

Measurement of correlation functions for the noise field on the

surface of a vehicle during launch or static firing show that,

for a narrow-frequency bandwidth around frequency _, the

correlation in the axial (or vertical) direction is approximately

sinusoidal, with a wavelength corresponding to the acoustic

wavelength ha : 2_c/_ : 2_/ka 5--/. This, then, is the empirical

evidence that the noise field is indeed a sound field which tends

to propagate along the length of the vehicle. Similar correlation

measurements along the circumference of the vehicle indicate that

the spatial extent of the correlation in the circumferential
r- y

direction is somewhat larger than that in the axial direction p-/,

9



a fact which further indicates the directionality of the acoustic

noise field. This effect is more pronounced at lower frequencies,

a fact which can be interpreted to mean that the lower-frequency

sources, being associated with relatively larger mixing or shear

lengths, are farther downstream than the high-frequency sources.

As a result, low-frequency sound appears to emanate from well-

correlated "point" sources.

As we shall restate in section 1.4, for estimation of

structural response, we shall idealize this sound field to be

diffuse, with identical correlation in all directions on the

vehicle surface. Since our chief concern is with high-frequency

vibration induced on the vehicle surface, this approximation is

not too unreasonable. Also, at high frequencies, the wavelengths

associated with the acoustic noise field are generally smaller

than the circumference of the vehicle. We shall therefore assume

that, as far as the reflection and diffraction of the noise

field from the vehicle surface is concerned, the noise field

does not sense the curvature of the vehicle surface. In other

words, the vehicle presents essentially a large flat surface

to the noise field.

1.2.7 Estimation of Noise Levels at the Surface of a

Rocket-Powered Launch Vehicle. - As we mentioned before,

estimation of noise levels from the detailed analysis of the

physics of the flow field is an almost impossible task. We

must, therefore, obtain our estimates by extrapolating existing

data with the aid of well-established similarity arguments, or

scaling laws _.

Although present-day liquid-fuel engines vary markedly

from solid-fuel engines in their design and operation, both

types of engines produce exhaust streams of high-velocity hot

gases. A typical exhaust velocity is of the order of 7500 ft/sec

for both kinds of engines. Because the sound pressures are

associated with the exhaust flow, we expect that the noise field
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of the two types of engines will not be markedly different,

if similar firing configurations are involved. For example,

a common arrangement, utilized in many static firing tests and

surface launches of large rocket-powered vehicles, involves

an exhaust deflector turning the stream into one or more hori-

zontal paths.
Since the lift-off noise levels for different vehicles

do not differ greatly, we can estimate, with a certain degree

of confidence, noise levels for a new vehicle from the measured

data on an existing vehicle. In choosing a system from which

to scale measured data, we must generally seek to satisfy two

requirements. First, the existing system should provide
sufficient measurements to describe the new situation of interest.

Second, the scaling factors should be as small as possible.

That is, we must choose a system which comes as close as possible

to the dimensions of the new system of interest.

ScalSn_ Laws. - For dynamically similar systems it
may be shown7'---a_/that the sound pressure spectra measured at

similar positions are the same when given in constant-percentage

frequency bands and when frequency is scaled in inverse proportion

to a characteristic length. This result has been verified in
experiments 9_/ and gives rise to the use of a nondimensional

frequency parameter. This parameter is the so-called Strouhal
number, defined by frequency multiplied by a characteristic

dimension of the system (such as engine nozzle diameter) and

divided by a characteristic velocity (such as expanded exhaust

velocity). Under the assumption that the characteristic velocity

of all rocket systems considered is approximately constant, the

frequency parameter may be reduced to "frequency times nozzle
diameter."

The inclusion of multiple-nozzle systems requires the
definition of an effective nozzle diameter d to be used inelf
obtaining the frequency parameter. For a system consisting of
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n equal nozzles spaced one nozzle diameter d or less apart,

the effective nozzle diameter def f is found from experiments
to be

def f : d(n) I/2 (8)

This relation reflects the fact that Jet streams from closely

spaced nozzles coalesce rapidly. Limited data indicate that

def f is the same as d if the nozzle separation distance greatly

exceeds d.

In scaling acoustic data from one system to another, we

must also adjust for changes in thrust levels between the two

systems. This correction factor, however, in most cases will

be less than the ratio between the thrusts. This is because,

if the vehicle trajectory is to remain more or less the same,

a larger thrust generally corresponds to a heavier and larger

vehicle. Furthermore, the exhaust velocities do not vary a

great deal, and even though noise level increases with thrust,

the observation point at a "similar" station on a larger vehicle

would be farther away from the noise source.

1.2.8 An Example of E_timation of Lift-0ff Noise by

Dimensional Scaling. - Fig. i shows the noise level spectrum

SPL A in third-octave bands of frequency, as measured at location

xA on vehicle A. The location xA is halfway between the base

and the nose of the vehicle. The length of the vehicle A is LA,

the overall diameter is DA, and the total thrust is TA. During

launch, the vehicle is powered by a single, liquid-fuel rocket

engine with a nozzle diameter of dA.

We wish to estimate the llft-off noise level spectrum SPL B

at location x B , halfway between the nose and the base of a

vehicle B. The length LB, the over-all diameter DB and the total

thrust TB for vehicle B are
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L1 = 2LA

DB = 2D_

TB = 4TA

The total thrust TB is provided by four closely clustered liquid-

fuel engines, each with a nozzle diameter dB = dA. The exhaust-

deflector systems for vehicles A and B are similar.

We assume the same velocity in the exhaust streams of the

two vehicles. In that case the noise level spectrum SPL B at

frequency fB is approximately equal to the noise level spectrum

SPL A at frequency fA' where the frequencies fB and fA are related

as

fB deff B = fA deff A '

deffB and deffA being the effective nozzle diameters for the

two vehicles. Consequently, we have

fB-- fAdA/(dA 41/2) -- fA/2 "

Thus the noise level spectrum for vehicle B is obtained by

shifting the spectrum SPL A one octave to the left on the frequency

scale. The spectrum SPL B thus obtained is shown in Fig. I.
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For the present example, note that the vehicle thrust _s

proportional to the total nozzle area, and the overall vehicle

dimensions are proportional to the effective nozzle diameter•

In other words,

TB/TA = _dB 2/dA 2

L_L A -- DB/D A -- deff/deffA

Thus, aside from the fact that vehicle B is expected to take off

more slowly than vehicle A, the dynamic and geometric similarity

between the two vehicles during launch is quite complete. There-

fore it is not necessary to modify the estimated spectrum SPL B

for changes in thrust.

1.3 The Aerodynamic Noise Environment

of a Typical Launch Vehicle

1.3.1 Introduction• - The aerodynamic noise input to a

launch vehicle is caused by the unsteaay pressure fluctuations

in the turbulent boundary layer which envelopes the vehicle

throughout its flight in the atmosphere.

Measurements 10_ 25/ of the rms pressure fluctuations on

a smooth flat plate in incompressible flow show a generally

accepted level Prms = 0.006q, where q is free-stream dynamic

pressure. When referred to the wall shear stress, Prms = 2.7Tw,

where T is the viscous shear at the wall The second relation
W •

more adequately reflects the physical mechanism which generates

the fluctuations in the turbulent boundary layer. Similar

measurements on flat plates in compressible flow have been done

Kistler 1-_/by and Speaker and Ailman _-_. The two experiments

show opposite trends for the behavior of Prms/Tw with Mach number.
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of Ref. I0 indicate that Prms/Tw increases slowly,The results

reaching a value of about 4.5 at a Mach number of 2. The

results of Ref. 25 suggest that Prms/Tw decreases with Mach

number, reaching a value of 1.5 at a Mach number of 2. This

discrepancy has not been resolved.

A launch vehicle differs from an ideal flat plate in two

important respects. First, it is not smooth. The exterior

skin is covered with structural discontinuities, stringers,

brackets, and protuberances of all sorts. If we are Justified

in assigning an average roughness height to these elements, we

may treat the boundary layer as a turbulent boundary layer over

a rough flat plate _-_/.

The second difference is that a launch vehicle is not flat.

There are strong pressure gradients over the vehicle at various

corners and flares. The most intense noise comes not simply

from the turbulent boundary layer but rather from its interaction

with severe adverse pressure gradients causing regions of separated

flow. If these pressure gradients are due to compressive shock

waves, the resulting unsteady shock boundary layer interaction can

cause a particularly intense pressure fluctuation.

An additional source of turbulence-lnduced pressure fluctua-

tions for a manned launch vehicle is the impingement of the

turbulent wake of the escape tower upon the payload capsule.

Figure 2 is a brief summary of the important noise sources

on a typical launch vehicle as a function of flight Mach number.

Most of the pressure fluctuations due to these phenomena have

a root-mean-square level proportional to the dynamic pressure

q. An estimate of the root-mean-square pressure coefficient,

Cp___ _ Prms/q, to be expected for each type of flow is also

inCUBated in the sketch.

For reference, Fig. 2 also shows q versus Mach number M,

for a typical flight trajectory. To aid in converting to noise

level, the dynamic pressure is plotted in decibels relative to

0.0002 _bar. Since q is about 180 to 185 dB throughout the
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range of interest, a region of flow separation which has

Prms = O.lq will have an aerodynamic noise level of 160 to

165 dB.

We now discuss some of these problems in more detail.

An analytic prediction of the level, spectra, and space-tlme

correlation for separated flows, shock boundary-layer interaction,

and turbulent boundary layers over rough surfaces is of course

impossible. The best that we can do is to correlate flight

and wind-tunnel test data and to apply suitable scaling and

semiempirlcal theories in an attempt to predict these phenomena

for new configurations.

We shall consider the following problems:

1.3.2 The Turbulent Boundary Layer on a Rough Flat

Plate and its Application to Regions of

Attached Flow

1.3.3 Wake Impingement

1.3.4 Subsonic Flow Separation

1.3.5 Transonic Shock Boundary-Layer Interaction

1.3.6 Shock-Induced Separation at Interstage

Flares

1.3.2 The Turbulent Boundary Layer on a Rough Flat Plate

and its Application to Resions of Attached Flow. - There exist

regions on launch vehicles for which the dominant aerodynamic

noise source will be an attached turbulent boundary layer in a

uniform static pressure field. For example, long cylindrical

stages should be essentially free of strong pressure gradients

from about one body diameter downstream of the Interstage flare.

We model the turbulent boundary layer in these regions as a

turbulent boundary layer on a flat plate.

Experiments I-_/ on smooth flat plates show that Prms/Tw

is a _lowly varying function of Mach number M, varying from

~ 2.' _t M = 0 to ~ 5 at M = 5. For a smooth flat plate with
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a fully developed turbulent boundary layer from the leading

edge, the local skin-friction coefficient, cf _ Tw/q, drops

off slowly with Reynolds number based on the distance from the

leading edge:

Rx = Ux/V ; cf = 0.0296 (Rx)-i/5 . (9)

For Reynolds numbers in the range R x _ 107 , the corresponding

value of skin friction coefficient cf is about 0.0022. This

gives a value for Prms equal to about 0.006 q. This is often

taken as a typical value for turbulent-boundary-layer noise in

incompressible flow.

For a launch vehicle to be hydraulically smooth, the

roughness elements must be small enough to be buried in the

laminar sublayer _-_/. For typical Reynolds numbers on such

vehicles at max q, R _ 109 , the height of these roughness
x -7

elements would have to be only i0 of their distance from the

leading edge. Although the exterior skin of the vehicle is

covered with roughness elements of various sorts, we will

idealize the problem by making the following assumption: We

assume that the "equivalent" roughness height ks of these

elements is 0.01_ of their distance from the leading _eage. At

3000 in. from the nose of the vehicle, this gives an equivalent

roughness height of 0.3 in., which seems reasonable for a typical

vehicle. With a roughness scale of ks/X = 0.0001, the vehicle

will be hydraulically rough above a Reynolds number of i06 I-_/.

In this hydraulically rough flow regime, the skin-friction

coefficient cf is about 0.0035 for incompressible flow. This

value is independent of Reynolds number and represents

essentially the form drag on the roughness elements. For a

compressible fluid, the skin-frlction coefficient is slightly

reduced owing to a decrease in density with increasing temperature

near the wall.
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An approximate expression for the growth of the boundary-

layer displacement thickness 5" along the vehicle can be found

from the integral-momentum theorem relating boundary-layer

growth to shear stress at the wall:

de/dx = cf/2, (io)

where e is the boundary-layer momentum thickness. For a fully

developed turbulent boundary layer, the form parameter, H = 5*/e,

is used to relate the displacement and momentum thicknesses. In

Ref. 12, Clauser discusses the dependence of H on the skin-

friction coefficient. Experimental results on smooth and rough

plates in incompressible flow give a value for H of ~ 1.5 for

a skin-friction coefficient of 0.0035. In compressible flow,

the form parameter H increases owing to a rapid increase in 5*.

At a Mach number of 2, H is about 3.

The growth of 5* with x is then

5* : cfHx/2 (ii)

or, for the suggested values of cf and H,

5* o.oo26 x . (12)

Figure 3 shows 6" as a function of x for a flat plate. Also

shown are two commonly used formulas I-_/ for 5* for a smooth flat

plate for U = 1600 ft/sec. The value of the kinematic viscocity

v for these curves has been taken as v = 0.8 x 10-4ft2/sec, the

18



value for air at -67°F, which is the ambient temperature above

an altitude of 40,000 ft. The 5* values for a smooth plate

are, of course, less than those for a rough plate.

Either the boundary-layer displacement thickness or momentum

thickness may be used to nondimensionalize the spectrum of the

boundary-layer pressure fluctuations. B* has been used most

often for this purpose, although the experiments of Ref. 25

suggest that e would be a better scaling parameter for the full

range of Mach numbers, since the momentum thickness is less

sensitive to compressibility effects.

The level of the pressure fluctuations should reflect the

increased value of skin friction due to roughness. For this

value of cf, the root-mean-square levels are predicted to be

Prms _ 0.01 q in incompressible flow. Willmarth I-_/ noted that

the values on a rough plate are actually slightly higher than

predicted by Prms = 2.7 _.

For low supersonic Mach numbers, less than about 2, a value

of 4.5 would be more realistic 2-_/. In addition, the
Prms/Tw

skin-friction coefficient for a smoo_h flat plate decreases

somewhat; the ratio of skin-friction coefficient cf to its value

in incompressible flow cfi is about 0.85 for this Mach number

regime. If this ratio holds also for a rough plate, the root-

mean-square level of pressure fluctuations would be Prms = 0.015 q.

This discussion is not intended to be a derivation of the

expected noise levels due to turbulent boundary layers on launch

vehicles. Its purpose is merely to show how reasonable values

for equivalent roughness can predict an increased level of

pressure fluctuations for an attached turbulent boundary layer,

plus an increase in boundary-layer displacement thickness and

momentum thickness. These levels are quite typical of flight

data on launch vehicles. Flight data from airplanes show much

lower levels (Prms = 0.O06q) consistent with the observation that

airplanes usually have the ribs and stringers inside the skin.
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The prediction of actual boundary-layer thickness along

a launch vehicle would require lengthy and complex calculations

involving effects of pressure gradients and flow separation.

Such calculations would be approximate at best. On the smooth

portions of the vehicle where the boundary layer is attached,

we take a value for 5* equal to that for a rough flat plate at

the same distance from the leading edge. The actual value of

5* does not affect the level of tile pressure fluctuations at a

point, but rather the peak frequency of ti_e spectrum. The

maximum of a constant-percentage frequency-band spectrum occurs

at a frequency fS*/U = 0.16 i_/, or _*/U = i. If the momentum

thickness e is used as a scaling parameter, then fe/U _ 0.12.

The spectrum is quite flat about this frequency, with considerable

energy for several octaves on either side of the center frequency.

A composite spectrum is shown in Fig. 4. This represents a com-

parison of the wind-tunnel measurements of many investigators

and represents a best fit to their data. This curve is taken

from Ref. 14.

For the calculated value of 5*, flight at U = 1600 ft/sec

has a spectrum that peaks at a frequency given by fx = 105, where

x is the distance from the leading edge in feet. In Fig. 3, the

peak frequency is plotted as a function of x. A sketch of a

typical launch vehicle is also shown in Fig. 3. The distortion

is, of course, due to the logarithmic scale. Peak frequencies

in a range from 800 to 300 Hz are predicted for the long cylin-

drical stages. These values compare well with available flight

data at appropriate locations.

To estimate the effective mean convection velocity U of
c

the fluctuating pressure field on the surface of the vehicle, the

results that Kistler and Chen I-_/ obtained in a supersonic wind

tunnel can be used. According to this study, the ratio of convection

velocity Uc to free-stream velocity U Js 0.75 for M % 1.7,

0.7 for M = 2, and 0.6 for M _ 3.
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1.3.3 Wake Impinsement. - Throughout the high-q portion

of the flight of a manned launch vehicle, the turbulent wake

from the escape tower will cause an increase in the pressure

fluctuation on the vehicle. An important source of aerodynamic

noise will be the increased intensity of turbulence due to wake

impingement on the nose of the vehicle and• to a lesser extent,

on the downstream sections. In supersonic flow, an additional

cource would be the unsteady shock-wake interaction. Available

experiments show the level increasing in the supersonic range,

possibly as a result of this effect.

Turbulent wakes in all Mach number regimes, from low

subsonic to hypersonic, show many of the same characteristics.

The dominant feature of these wakes is the large eddy structure.

The most thoroughly investigated wake is that behind a circular

cylinder. Below the critical Reynolds number of about 4 x 106 ,

the eddies are periodically shed at a nondimensional frequency

or Strouhal number S = fD/U _ 0.2. Two-dimensional wakes for

general bodies can be compared• on the basis of wake momentum

thickness• to those of a cylinder, since the far wake should be

a function only of the drag on the body.

15• 16/
Similarly, the experiments of Goldburg et al.

for both incompressible and hypersonic flow, have suggested

that a Reynolds number and Strouhal number based on wake momentum

thickness characterize wakes from a wide class of axisymmetric

bodies. The momentum thickness for an axisymmetric body is

e : (CDA/2 )1/2 , (13)

where CD is the drag coefficient and A is the frontal area. For

Reynolds numbers above 90, the large eddy structure dominates

the wake.

21



The experiments on spheres show a wake eddy structure

having a Strouhal number, based on sphere diameter, of 0.19 for
incompressible flow and 0.33 for hypersonic flow (M = 14).

The hypersonic results for both cones and spheres correlate

well with a Strouhal number based on wake momentum thickness,

Se _ 0.12. The corresponding incompressible-flow results were
made in a Reynolds number range for which both the drag coefficient

and the Strouhal number were varying quite rapidly, R _ I000.
For 103 < R < 105 , the experiments of Ref. 17 show that

fd/U _ 0.2 for a sphere. The experiments are quite sensitive

to the presence of boundary layer transition or shear layer

transition. Some of the experimental results also indicate a

branch for which S = fd/U increases with Reynolds number to a
value of 1.4 at R = 8 x 103 , suddenly falling to S = 0.2 and

thereafter remaining constant. The Reynolds number of interest

for launch-vehicle escape towers are well above this very
sensitive range, and a dominant frequency fd/U _ 0.2, based on

tower-base diameter, is expected.

Experimental results for the pressure fluctuations on the

nose of launch vehicles with various escape-tower configurations
are reported in Refs. 18 and 19. The location of the pressure

transducers on the forward cone in these experiments is indicated

in Fig. 5. Transducer i was present in both tests, transducer

2 in the tests of Ref. 19 only.

The actual level of C is dependent upon details of the
Prms

tower configuration and angle of attack of the vehicle. Figure 6

presents a boundary of maximum level to be expected as a
function of Mach number for these two transducer locations.

The level at transducer 2 is higher, possibly because this

location is more apt to interact with the region of greatest
shear in the turbulent wake.
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The individual results for various tower configurations

and for a range of angles of attack between + 6° and - 6° form

a thicket of curves below these boundaries. The individual

curves show some differing trends with Mach number, dependent

upon the details of the configuration and the angle of attack.
The available spectra for these experiments peak at a

Strouhal frequency of about 0.2, based on tower-base diameter.

A nondimensional power spectrum Cp(fd/U)/C__ _ in third-octave
Prms

bands is shown in Fig. 7.

The convection velocity for the motion of these large

wake eddies should be taken as Uc/U _ _ 0.5, a value more

characteristic of wake flow, rather than Uc/U _ _ 0.8, the value

for _ fully developed turbulent boundary layer.

1.3.4 Subsonic Flow Separation. - In subsonic flight, the

turbulent boundary layer will experience a strong pressure

gradient at cone-cylinder junctions. Regardless of whether the

turbulent boundary layer actually separates, the level of

pressure fluctuations will increase owing to an increase in

the rate of momentum entrainment necessary to overcome the

pressure gradient. The level of fluctuation increases with the

turning angle and decreases with distance downstream as the

boundary layer approaches an equilibrium state.

A few experimental results on cone-cylinder subsonic

separation are reported in Refs. 18, 19, and 20, although the

main emphasis in these reports is on transonic buffeting which

takes place on the same area of the vehicle at slightly higher

Mach numbers. Since the levels are much higher for this portion

of the vehicle in the transonic flow, the details of subsonic

separation have not been thoroughly investigated. The data

available on this flow phenomenon is, therefore, not sufficient

to predict the complete pattern of level and spectra.

Some preliminary estimates for the level of pressure

fluctuations and the downstream decay have been made using the

available experimental results. The downstream decay in the
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level of pressure fluctuations is shown in Fig. 8. This result ,

for a turning angle of 33 ° at a Mach number of 0.7, has been

taken from Ref. 19. The data has been normalized to the value

of Cprms at an x/D of about 0.2. It seems reasonable to use

this general decay law for all turning angles, especially since

nothing else is available. Figure 9 shows the value for C
Prms

as a function of turning angle, e, for transducers located between

x/D = 0.12 and 0.2. Because of the approximate nature of this

summary, no attempt has been made to apply the downstream decay

factor to these levels. These two figures should give an

estimate of the levels to be expected aft of cone-cyllnder junctions.

These levels will eventually decay to those associated with a

turbulent boundary layer in a uniform pressure field.

Experiments are not available to define adequately the

spectra and convection speeds for subsonic boundary layers in

adverse pressure gradients. A few general statements can,

however, be made based on the available experimental evidence.

The spectra for subsonic separation show a shift to lower

frequencies, which seems to be an efficient way for the boundary

layer to gain momentum.

The convection speeds, if such a quantity can be defined

for a separated region, are lower than those for a turbulent

boundary layer in a uniform pressure field.

1.3.5 Transonic Shock Boundary-Layer Interaction. - One of

the most serious problems in aerodynamic excitation of launch

vehicle structures is transonic buffeting. As a result, this

phenomenon has been extensively studied, and, although many

questions remain open, it seems possible to predict, at leas%,

the root-mean-square level of pressure fluctuation to be expected.

At high subsonic Mach numbers, local supersonic flow regions

appear on the vehicle as the flow is accelerated by expansive

turning which takes place on launch vehicles aft of cone-cylinder

junctions.
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These supersonic regions are terminated by shocks that

cause the boundary layer to separate, resulting in an unsteady

shock-boundary interaction quite typical of the transonic flow

regime. A sketch of the flow aft of a cone-cylinder junction

at transonic speeds is shown in Fig. i©.

The complete flow pattern of shocks, :_eparation, reverse

flow, and boundary-layer reattachment oscillates in the stream-

wise direction at fairly low frequencies. The result of this

oscillation on the unsteady pressure fluctuations on the vehicle

surface is also shown in Fig. I0. In this sketch, point 2 is

always in the separated flow region, while points i and 3 are

alternately in the attached and separated flow regions. The

unsteady pressure fluctuation at points i and 3 owing to shock

oscillation has the form of a random rectangular wave as these

points are alternately ahead of and behind the shock.

A comprehensive summary and correlation of much of the

available wind-tunnel data on this phenomenon is given by Wiley

and Siedl _ The time-pressure waveforms in Fig. 10 have

been taken from their report.

The correlation of data from this report shows that the

level of pressure fluctuation increases with increasing turning

angle e and decreases with nondimensiona! distance downstream

of the corner, x/D. From experiments on different vehicles,

Wiley and Seidl have evolved a series of design charts to predict

the maximum level to be expected as a function of e and the

downstream decay as a function of x/D. Figures ii and 12 of this

report reproduce this summary of available data. Figure Ii

shows the maximum value of C expected as a function of e
Prms

and x/D. Figure 12 shows the Mach number at which this maximum

occurs, for a given turning angle and x/D. As the Mach number

increases, the shock region moves downstream and the intensity of

the pressure fluctuation decreases.
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The spectrum of t]_e resulting pressure fluctuation is

difficult to predict. The data of Refs. 20 and 21 suggests

that the peak frequency for shock oscillations decreases with

increasing distance downstream. This might be expected on

physical grounds, since the greater the shock distance from the

corner, the larger the region of separation and reverse flow

can be, with resulting lower characteristic frequencies associated

with larger eddies.

From the data of Refs. 20 and 21, a few calculations have

been made whic1_ indicate a scaling based on distance from the

corner. The Strouhal number based on x, fx/U, was about 0.045

for a surprising number of tests. This seems to be valid until

x/D _ 0.5. After this point, the sequence of spectra with Mach

number indicate that the low-frequency shock boundary-layer

interaction is not as dominant, and the energy shifts to the

higher frequencies more characteristic of a turbulent boundary

layer. A nondimensional spectrum based on this assumed scaling,

fx/U _ 0.045, is shown in Fig. 7. This spectrum has been taken

from the tests of Ref. 20 as representative for transonic shock

boundary-layer interactions.

A reasonable fit to this spectrum shape can be made by

calculating the spectrum of a random rectangular wave that

oscillates between two values that differ by a magnitude a. If

tk is the average time spent at the high pressure and the

average time spent at the low pressure, the spectrum is given

by2__gf

S(f) = 4a2[(2vf) 2 + [(-ti+_k)/-ti-t k)}2]-l(t_+t k) -i . (14)

In Ref. 20, the experimental results from which the shock

oscillation spectrum given in Fig. 7 was obtained was also analyzed

to determine average values for T k and T_._ The spectrum as
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derived from Eq. (14) with these values of T i and T k is shown

as a dashed curve. The agreement is rather good, although the

peak frequency predicted is high.

No information is available at this time on the spatial

amplitude of shock travel. Consistent with the scaling ideas

proposed here, this could be taken as some fraction of the

distance to the corner.

1.3.6 Shock-lnduced Separation at Interstate Flares. -

During the supersonic portion of the flight trajectory of a

launch vehicle, the turbulent boundary layer will be subject to

a strong pressure rise near the interstage flare owing to an

oblique shock that compressively turns the flow. If this pressure

rise is sufficiently strong, shock-induced boundary-layer

separation will occur. The oblique shock and the resulting

separation point will move upstream of the flare and the flow

will become unsteady.

Owing to shock oscillation, the region near the separation

point has a high level of root-mean-square pressure fluctuations.

Most of the energy of this disturbance is at low frequencies.

Also, the separated region behind the shock will have very high

pressure-fluctuation levels with a spectrum more characteristic

of an intense turbulent boundary layer with an increase in

displacement thickness.

To determine when and if the turbulent boundary layer will

22_23/separate at the flare, we examine the experiments of Kuene

These experiments were carried out on both two-dimensional flares

and three-dimensional flared bodies of revolution. The object

of these investigations was to determine what pressure rise

would be allowed as a function of Mach number and Reynolds number

before the turbulent boundary layer would separate. The range

of Mach numbers M that were tested was 1.5 to 3.5. The range of
o

Reynolds numbers _ , based on boundary-layer thickness 5°

obtained in these tSsts, was about 104 to 105; whereas, on a
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typical launch vehicle, the Reynolds number based on _o is

more apt to be in the range of 106 to 107. The results of

these experiments are presented in Fig. 13, which shows the

pressure rise that will be tolerated for different Mach numbers

as a function of Reynolds number R_ . These experiments were
o

performed on both two- _ and three-dimensional 2__ compression

corners. The results indicate that, in the high-Reynolds-number,

low-Mach-number range, the values of (p!/po) for incipient

separation versus _ are the same in both two and three dimensions.

The results in Fig. 23 show that separation is more likely to

occur for a given static pressure rise as the Reynolds number

R6 is increased and as the Mach number M ° is decreased.

The curves of Fig. 13 were extrapolated in a reasonable

but probably risky way to a Reynolds number of I06. The results

of this extrapolation are shown in Fig. 14. The experimental

results for R5 = 104 and R_ = 105 are also shown in Fig. 14.
o o

These curves should give an estimate of when shock-induced

separation will occur on launch vehicles for a known flare angle e.

When boundary layers separate at steps or flares, there

is a characteristic pressure rise that seems to be a function of

Mach number. Experimentally determined values of this

plateau i0, 22_ 23, 25/
pressure pp from several sources are

also shown in Fig. 14. If the boundary layer separates, the

strength of the first shock that occurs at the separation point

is determined by this plateau pressure ratio.

Limited experimental data is available at this time con-

cerning the pressure fluctuations in a separated supersonic

flow. Experiments on flares have recently been carried out by

Coe at Ames Research Center, but this data is not yet available.

We must therefore examine data on related configurations.

Kistler has measured both static and fluctuating pressure

before a step at M = 3. His results are summarized in Figs. 15

and 16. The fluctuating pressures in the region of separated

flow are of two distinct types.
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Near the separation point, an intense local low-frequency

disturbance exists. This is owing to the oscillation of the

shock. Behind the shock, the level of pressure fluctuations

is an order of magnitude above the level of the turbulent

boundary layer in front of the shock. The spectrum of these

fluctuations is broad and more characteristic of a turbulent

boundary layer with an increased displacement thickness.

Significant in this experiment is the time waveform at

station 2, near the separation point as shown in Fig. 15. This

square-wave shape indicates that the smooth static pressure

distribution is just the time average of the abrupt pressure

jump due to the oscillating shock similar to that observed in

transonic flow. Kistler _-_ shows that the root-mean-square

levels due to shock oscillation may be obtained from the static

or time-average pressure distribution. He defines a parameter

C(x) as the fraction of time the pressure at x is equal to the

higher pressure P2" If the shock is assumed to be a discontinuous

jump from Pl to P2' C(x) can be found from the static pressure

distribution, since

_(x) = C(x)p 2 + [l-C(x)]Pl " (15)

The mean-squared pressure fluctuations would then be given by

<[p(x,t) - _(x)]2>low freq. due to shock = c(I-C)(Pl-P2 )2' (16)

= '2
<[P-_(x)]2>due to turbulent fluctuation CP2 '2Pl ' (17)
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T2 '2
where Pl and P2 are the levels due to turbulent boundary

layer fluctuations before and after the shock (see Fig. 16).

The agreement between the calculations of the root-mean-square

levels and Kistler's experiment is quite good. The same

assumptions should also be valid for separation in front of

interstage flares.

For shock-induced separation, the pressure rise through

the shock is determined by the characteristic plateau pressure

(see Fig. 14). If Po is the pressure before the shock, and pp

the plateau pressure in the separated region, the maximum root-

mean-square level due to the oscillation shock occurs for

C(x) = 1/2. At this point,

hjp--_ = (pp-Po)/2 = po[(pp/Po)-l]/2 = (Po/2)(AP/P o) • (18)

The expression Ap/po can be found from Fig. 14 as a function of

Mach number.
'2

The root-mean-square fluctuations (P2) due to increased

turbulence intensity behind the shock cannot be calculated

analytically, and a definitive set of experiments on separated

supersonic flows has not been made. We must, therefore, resort

to empirical reasoning to predict approximately the noise levels

to be expected. The physical assumption that underlies the

reasoning is that pressure fluctuations in the turbulent boundary

layer should be proportional to the rate of momentum entrained

by mixing. In other words, in order to overcome an adverse

pressure gradient and wall shear forces, the turbulent boundary

layer must entrain momentum from the free stream by mixing. This

vigorous mixing is seen as the cause of the pressure fluctuations.
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The pressure fluctuations in a turbulent boundary layer

are proportional to the rate of momentum entrained. For a

boundary layer in zero pressure gradient, this momentum is used
to overcome the wall shear. For a boundary layer in an adverse

pressure gradient, almost all of the momentum is used to overcome

the pressure rise. The rate of momentum gain by a separated
layer can be estimated by examining the discussion of Williams 2_.

He postulates (a) that the upstream position of the shock in
front of the flare must be sufficient to enable the separated

layer to gain the momentum necessary to overcome the second
pressure rise at the flare (see the sketch in Fig. 14), (b) that

the rate of momentum gain per unit length is proportional to
2

ppUp , and (c) that the force due to the pressure rise to be
overcome by the gain in momentum is (p_pp)5. The experimental
data for separated layers at flares correlate fairly well with

this parameter. A straight line drawn through the data presented
in his note indicates that

_-25(pl-Pp)/ppM2 . (19)

If we calculate the rate of momentum entrainment per unit

relative to ppUp2/2 outside the boundary layer, welength C m ,

obtain

c m = (pl-Pp)(B/L)(_,ppMp2/2) -1 = (Ap_o) (LppUp2/2)- 1

_0.05 to 0.06 (20)
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In reality the mixing takes place about a distance L up the

flare, so the rate of momentum entrained need be only half that

indicated by this equation, or c = 0.025 to 0.030. If we
m

assume that this momentum gain is proportional to the root-mean-

square pressure fluctuations in the same way as for a boundary

layer in a zero pressure gradient, we obtain a maximum root-mean-

square level of

Cprms = Prms/qP _ 2.7 Cm _ 0.068 to 0.08
(21)

To the accuracy of these assumptions, q could be taken as free-

stream dynamic pressure. Consistent with the scaling postulated

for shock oscillation in Section 1.3.5, the frequency should be

a function of the size of the separated region. Very little

data is available to confirm this. The results of Ref. 25, when

scaled on this basis, have a Strouhal number fx/U = 0.06 for the

flow separation before a step at M = 3.45.

1.4 Appropriate Mathematical Models for the Environments

In order to facilitate analyses for estimation of structural

response, we must endow the environmental noise sources discussed

above with some degree of idealization. We devote this subsection

to this task.

1.4.1 Acoustic Noise Durin$ Lift-0ff. - We assume the

acoustic noise field to be diffuse. In other words, in any

frequency band, the sound field consists of a multitude of un-

correlated plane waves of equal intensity traveling in all

possible directions with a uniform density.

1.4.2 Fluctuating Pressure Field Associated with a

Turbulent Boundary Layer under Smooth Flow Conditions. - Experiments

13, 14/ indicate that in the fluctuating pressure field under a

turbulent boundary layer, the properties characterizing the decay
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and convection of pressure "eddies" depend on the free-stream

velocity and eddy size. Pressure fluctuations having progressively

smaller spatial range are carried forward by the flow at pro-

gressively smaller convection velocities_ in other words, smaller

eddies, being closer to the wall, suffer less convection than

larger eddies. Also, smaller eddies remain coherent for shorter

spans of time than do larger eddies. The extent of this eddy

decay in time also depends on eddy-convection velocity.
The mathematical model we have chosen for the turbulent-

boundary-layer (TBL) pressure fluctuation field, however, ignores

the above subtleties. We first give a brief account of this

simple model and then provide an intuitive justification for our
choice.

We assume that the fluctuating pressure field p(_,t) on the
surface of a structure is statistically homogeneous and stationary

in time t and space _ = (Xl,X3)*. Here, x I is the direction

of the flow and x 3 is transverse to the flow.

The distribution of eddy size in the fluctuating pressure

field can be expressed mathematically in the form of the normalized

wavenumber spectrum @13(_). We assume that this wavenumber

spectrum can be factored into components _l(kl) and _3(k3). We

also assume that the fluctuating pressure field is convected with

a velocity U c in the direction xI of the flow, and that this

convection velocity is independent of the wavenumber _. Lastly,

we assume that the temporal decay of all the pressure eddies

(or the wavenumber components) is characterized by a single

* Vector notation will be used wherever possible.

: (Xl,X3), _ = (kl,k3) , d_ : dk I dk3, etc.

Thus
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"temporal" or "moving-axis" spectrum Cm(_). The above

assumptions then enable us to express the combined wavenumber

and frequency spectrum for the fluctuating pressure field 2--_/:

Cp(k,_) = ph 2 @l(kl) @3(k3) @m(_-klUc) •
(22)

Here, _ is the wavenumber vector (kl,k3), _ is the radian
2

frequency, Ph is the over-all value of the mean-squared pressure

fluctuations, and ¢i' ¢3' and Cm are the normalized "spatial"

and "temporal" spectra. The familiar frequency spectrum, obtained

by filtering the data measured by a "fixed" microphone, is then

given by *

2 yyPh ¢f(_) = Cp(k,m) dk , (23)

or

Cf(m) = _ ¢l(kl ) Cm(CO-klUc ) dkl " ( 24 )

Here, Cf(_) is the normalized "fixed-microphone" spectrum.

As we shall see in Section 3, for common situations of

interest in launch-vehicle dynamics, the structural vibration

at "resonance and coincidence" dominates the response. For such

a case, the pressure spectra that enter directly into the response

estimates are the fixed-microphone spectrum ph 2 Cf(_) and the

wavenumber spectrum ¢3(k3) in the transverse direction. Thus

* In this report, unless otherwise stated, all the integrals

are definite, with the range of integration from -_ to +_.

34



we bypass the necessity of specifying the detailed shape of

the wavenumber spectrum ¢l(k I) or the temporal spectrum _m(_).

This economy in input information is due to the experimentally

established fact that the temporal spectrum Cm(_) is relatively

"sharp," with significant values only at low frequencies. In

such a case, the temporal spectrum is influential only to the

extent to which it distinguishes between relation (24) for the

normalized fixed-microphone spectrum _f(_), and the following

relation (the "Taylor hypothesis"):

=  l(kl =  /Uc)/Uc (25)

The discussion in Section 1.3 enables us to estimate the

ph 2 _f(_) in terms of trajectory andfixed-microphone spectrum

For the wavenumber spectrum _3(k3), wegeometric parameters.

assume the following form:

-1

@3(k3) = (2_*/_r)[(2k3B*)2 + i] . (26)

This corresponds to an exponentially decaying correlation in the
,, 26, 27 /

x3 direction, with a correlation length" of 28"

Justification for the Simple Model. - As we noted

above, our present interest is in estimation of structural response

at "resonance and coincidence." Even though the extent of eddy

decay may vary for different wavenumbers, the temporal spectra

•m(_) appropriate for different wavenumbers would still be

"sharp" in the sense described above. In that case, response

formulas at "coincidence" from a more sophisticated model will

also contain explicitly only the fixed-microphone spectrum

ph2@f(_) and a multiplying factor which, for the simple model
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described above, turns out to be ¢3(k3). The details of the

eddy decay will not appear explicitly at "coincidence"; this

information will be 'rcontained" in the fixed-microphone spectrum.

Furthermore, experiments _ suggest that the convection velocity

varies roughly from 0.8 U at low wavenumbers (or at low

frequencies filtered through a fixed microphone) to 0.6 U at

high wavenumbers, U_ being the free-stream velocity. Such a

variation can easily be introduced in relation (22) (in favor

of a mean convection velocity of, say, 0.7 U), but this will

only shift the final response spectra on the frequency scale

by a fraction of a third-octave band, at most.

In contrast to the above situation, for frequencies above

the hydrodynamic critical frequency fh for a structure (see

Section 3), the resonant and "noncoincident" vibration becomes

important. Such vibration is controlled by the temporal decay

of the pressure eddies. The temporal spectrum _m(_) is found

to appear explicitly in the final response estimates. Hence

the details of variation of convection velocity and temporal

decay with wavenumber assume significance in such a case _-3(/.

These situations arise in low-veloclty flows -- for example,

in sonar and other underwater applications.

1.4.3 Surface Pressure Fluctuations Associated with Subsonic

and Supersonic Separation_ Shock-Induced Separation_ and Wake

Impingement. - Detailed knowledge regarding the fluctuating

pressure fields associated with the above phenomena, unfortunately,

does not exist to date. Future experiments, we hope, will

provide us with information such as the relative importance of

the spatial and temporal fluctuations in the associated pressure

fields, the shape of the correlation functions, and the variation

of mean convection velocity with Mach number. The best that we

can do at the present stage is to assume that the lacking details

for the above flow phenomena bear a qualitative similarity with

those of the fluctuating pressure field associated with a
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turbulent boundary layer under smooth-flow conditions. There-

fore, for estimating structural response from environmental

excitation under the conditions of subsonic and supersonic

separation, shock-induced separation, and wake impingement, we

shall use the mathematical model described in the previous

subsection for a smooth-flow TBL pressure field. We shall,

of course, assume appropriate numerical values (discussed in

Section 1.3) for the magnitude of the boundary layer displacement

thickness, the over-all mean-squared value of the pressure

fluctuations, and the shape of the fixed-microphone spectrum.

1.4.4 Oscillatin$ Shock. - We shall assume the following

static pressure field to be associated with a shock front. The

pressure in front of and behind the shock front has constant

values. There is a discrete Jump _p in pressure across the

shock front. If the shock front (and the associated static

pressure fieldl oscillates in the direction x I parallel to the

main flow, we assume that the shock front always remains straight

in the transverse direction x3. That is, there is no relative

motion between different positions of the shock front in the

x3 direction. We also assume that the displacement y(t) of the

shock front from its mean position is essentially oscillatory,

but with a certain degree of randomness. We assume this random

motion y(t) to be temporally homogeneous, with an associated

spectrum _y(_), which is narrow band, and has a sharp peak at

the shock-oscillation frequency _osc" Further details regarding

excitation from an oscillating shock are provided in Section 3.4.

Note that the fluctuating pressure field that we have assumed to

be associated with an oscillating shock front is statistically

homogeneous in time but not in space.
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SECTION 2

SOME IDEALIZED STRUCTURES

2.1 Introduction

In this section we present various dynamical properties

of two simple structural elements, a flat plate and a cylinder.

In order to handle most situations of interest, we study these

structures in their finite as well as their infinite form, and

in their orthotropic as well as their isotropic form. Also,

we shall consider the case where a liquid (inside the cylinder,

or on one side of the plate) forms an integral part of the

structure.

2.2 Pressure-to-Velocity Wave Admittance

for Infinitely Extended Structures

When the exciting pressure field is statistically homo-

geneous over the surface of the responding structure and when

the discontinuities due to the structure boundaries do not play

a significant role, it is worthwhile to exploit these simplifi-

cations by using an infinitely extended model of the structure.

2.2.1 Infinitely Long Isotropic Cylinder or Plate. -

Consider an infinitely long, isotropic, cylindrical shell of

radius a, thickness h, and material density Pm" Let the axial

and circumferential directions on its surface be denoted by x I

and x3, respectively. Consider a pressure wave p(_,t), given

by relation (26), to propagate along the cylinder surface. The

velocity v(_,t) of the cylinder surface in the outward radial

direction is then proportional to p(_,t), and the factor of

proportionality H(_,_) is a function of the wavenumber k___,the

frequency _, and the properties of the cylinder.

p(_,t) = P exp[i k. x - _t] , (26)
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v(x,t) = p(_x,t) H(k,_) , (27)

H(_k,e) = (iva/PsC _) [ r4 + cos48 - v2 ] -i (28)

Here, Ps is the surface mass density, c$ is the velocity of the

longitudinal waves in the cylinder material, r and v are the

dimensionless wavenumber and frequency,

Ps = Pm h ' (29)

v = _a/c$ (30)

k = (kl,k3) , (31)

k--I_kl , (32)

kI = k cose , (33)

K3 = k sine , (34)

r = k(_a)l/2 , (35)

= h/(12)i/2. (36)

4O



The function H(_,_) [relation (28)] is the desired

pressure-to-velocity wave admittance. It can be obtained from
the differential equations of motion for a thin cylindrical

shell vibrating in its axial, circumferential, and radial
directions. In deriving relation (28), the influence of bending

and membrane stresses is accounted for in the simplest possible

way; the influencesof shear deformations and of axial and

tangential inertias are neglected. In spite of these approximations,
the final result [relation (28)] has been found to be exceedingly

accurate; especially for thin cylinders with thickness-to-diameter
ratio of the order of 10-2 or less _.

If we think of the admittance in relation (28) in terms

of energy functions, the kinetic energy of the system is
proportional to v2, the contribution to the potential energy

4
from the bending stresses is proportional to r , and the

contribution to the potential energy from the membrane stresses

is proportional to cos4e.The corresponding result for an infinite

flat plate can be obtained by omitting the term cos4e in relation

(28),since the effect of curvature and resulting membrane stresses

is absent in a flat plate.

We obtain the resonance condition from relation (28) by

equating the potential and kinetic energies,

= 4v2 r + cos4e (37)

The loci of constant resonance frequency v in the (r,e) plane

are shown in Fig. 17. In the "membrane region" of the (r,e)

s4e 4plane, co is larger than r ; thus membrane stresses dominate

and the resonance condition becomes approximately

v : cos2e (38)
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The constant-resonance-frequency loci in the "membrane region"

are thus radial straight lines. In the "bending region" of the
4

(r,e) plane, r is larger than cos4e; therefore, bending stresses

dominate, the structure responds like a flat plate, and the

resonance condition becomes approximately

v = r 2 • (39)

The constant-resonance-frequency loci in the "bending region"

are therefore circles. The "boundary" between the membrane

and the bending regions consists of two circles,

v 2 2 e ,= cos (4o)

In Fig. 17, only the positive quadrant of the (r,e) plane is

shown. The extension to the other three quadrants is straight

forward.

2.2.2 Infinitely Lon_ 0rthotropic Cylinder or Plate. -

For the isotropic cylinder considered above, the wall thickness

h entered directly in the determination of the kinetic energy

and the two components of the potential energy of vibration.

For the corresponding orthotropic structure, three "thicknesses"

or length scales must be used: "inertial" thickness, which

enters into the kinetic energy; "extensional" or "membrane"

thickness, which enters into the potential energy of the membrane

stresses; and "bending" thickness, which enters into the potential

energy of the bending stresses. The last two lengths can have

different values in the axial and circumferential directions

of the cylinder. These thicknesses are defined as follows:
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Inertial thickness h =
Average surface mass density Ps

material density Pm

(41)

Extensional thickness h I

= Average extensional rigidity in the axial direction

Young's modulus E

(42)

Bending thickness or radius of gyration _l

= (Average bendin$ ri$idit F in the axial direction )

Eh

l/2
(43)

Thickness h 3 and _3 for the circumferential direction are

similarly defined. The effective thicknesses thus defined would

of course be valid only for vibration with wavelengths larger

than the spatial extent over which the structural properties

are averaged.

As an example of these concepts, consider the corrugated

structure in Fig. 18. For longitudinal vibration in the xI

direction with wavelengths larger than the wavelength _ of the

corrugation, the inertial thickness h will be larger than the

thickness t, and the extensional thickness h I will be smaller

than t. Also, the deformations and restoring forces involved

would be of the in-plane or membrane variety even though, in

detail, these would be caused by the bending of the individual

corrugations 3-_ /
t •

Reverting to the orthotropic cylinder, we further define

= hz/h = hJh , (44)
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2 2
c3 = c_ _3 ' (45)

r cose a _i I/2m m = kl '
(46)

rm sinem = k3 a _3 I/2, (47)

rb cose b = kl(a_l )I/2 (48)

rb sine b = k3(_3 )I/2, (49)

v3 = _a/c 3 . (50)

Here, (kl,k 3) is once again the wavenumber of vibration on the

cylinder surface; (rm, em) and (rb,e b) are the dimensionless

wavenumbers that describe the membrane and the bending-controlled

vibration. Finally, in place of relation (28) for H(_,_), we

have for the orthotropic cylinder 2-_/

-i

H(k,_)_ = (iv3a/PsC3)[(rb4/_3) + cos 4em - v32 ] " (51)

Discussion in terms of energies of vibration and resonance loci

is analogous to that for the isotropic case, except that, in

the present case, the "bending" and "membrane" regions of the

wavenumber plane (kl,k 3) are best described by two separate

transformations.
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2.2.3 Infinitely Lons_ Isotropic and Fluid Loaded

Cylinder or Plate. - Consider an infinitely long, isotropic

cylindrical shell filled with a liquid. We restrict our

consideration to the case where the phase velocity of vibration

on the cylinder surface is less than the sound velocity in the

liquid, since this is the only situation encountered for the

liquid-bearing components of a typical launch vehicle in which

the liquids are mainly oxidizers and fuels. For such a case,

detailed calculations show that, for a prescribed vibratory

motion (in the radial direction) on the cylinder surface, the

pressure exerted by the liquid on the cylinder surface is always

out of phase with the velocity of the cylinder surface so that

no net energy is exchanged (in the steady state) between the

cylinder and the liquid. Also, the impedance offered by the

liquid pressure to the cylinder vibration is inertial, the mass

loading effect mf per unit surface area owing to the fluid being

approximately given by

-1/2
= 2 2)  o/k (52)mf Po (k2-_° Co

Here, Pc and co are the density and the sound velocity for the

liquid, _ is the frequency of vibration, and k is the magnitude

of the wavenumber of vibration on the cylinder surface [see

relations (31) and (32)]. As long as the vibration on the

cylinder surface is acoustically slow* with respect to c
O'

relation (52) for the mass loading effect is accurate, even

though the nature of the detailed pressure field inside the

liquid depends on whether the axial trace velocity of vibration

on the cylinder surface is more than, equal to, or less than c
o

Relation (52), of course, is valid also for a fluid-loaded,

infinite flat plate.

* See Section 2.4.1 for definition of acoustically slow vibration.
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With the help of relation (52), the (external) pressure-

to-velocity wave admittance H(_,_) can easily be written as

an extension of relation (28):

-I

H(k,co) = (iVa/PsC_)[ r4 + cos 4e -v2( 1 + 8/r) ] , (53)

where the dimensionless fluid-loading parameter _ is given by

= po(_a)i/2/9 s , (54)

and the rest of the nomenclature is that of Section 2.2.1.

The resonance condition now becomes

4
v2(l + _,/r) = r + cos 4e (55)

Once again the boundary between the membrane and the bending

regions of the (r,e) plane is given by relation (40). However,

there are some differences. The frequenc_ below which

membrane effects dominate (that is, cose _ r) is lower with

fluid loading. Also, except at very low frequencies, the loci

of constant resonance frequencies in the membrane region

of the (r,e) plane are no longer radial straight lines; in

fact, the loci tend rather to be the extensions of the circular

resonance locl in the bending region. This is illustrated in

Fig. 19, where resonance loci are shown for the case where the

dimensionless fluid-loadlng parameter _ is 7.54. This corresponds

to liquid oxygen in an aluminum container 33 ft in diameter and

180 mil thick.
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The simpler resonance conditions which hold approximately

in the membrane or the bending region of the (r,8) plane can

easily be obtained from relation (55) by neglecting one or the

other of the two terms on the righ_-hand side of relation (55)

2.3 Representation and Statistics of Modes and "Modal
Oscillators" for Structures of Finite Extent

When the excitation field is not satistically homogeneous

over the surface of the responding structure, or when the

discontinuities such as the structure boundaries are expected

to play a significant role, it is advantageous to consider the

modal representation of the finite structure. Often, the

analyses performed on highly idealized structures with simple

boundary conditions yield concepts (and answers) powerful

enough to find application in more general situations.

2.3.1 Modal Representation for a Cylinder and a Plate.-

For the sake of brevity, we shall specialize and restrict our

discussion to the two structures of interest, a flat plate and

a cylinder 3-_/' .

Modal Representation for an Isotropic Cylinder. -

Suppose that the isotropic cylindrical shell, which was discussed

in Section 2.2.1, has a finite length _I in the axial direction.

If this cylinder is simply supported along the circumferential

edges at its two ends, the velocity v(_,t) of the cylinder surface

in the outward radial direction can be expressed as a doubly

infinite sum of its modal components Vmn(t) as follows:

v(x,t) =_ Vmn(t)Cmn $'mn(X)

m n

(56)

There are two orthogonal modal shapes @mn(_ ) for each pair of

integers (m,n). These modal shapes are given by
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"_'lum(x) = sin(m_xl/_ I) cos(2n_x3/_ 3) ,

$mn(X) = sin(m_xl/_l) sin(2nwx3/_ 3) (57)

Here, m and n are positive integers and _3 is the circumference
of the cylinder.

The normalizing constants Cmn can be found from the
condition

J_ 2Ps Cmn
cylinder
surface

@mn2(_)d_ = M, (58)

where M is the total mass of the cylinder.

The wavenumber k is associated with the vibration of the

mode (m,n) is given by

k = (kl,k3) = (m_-/_I , 2n_-/_ 3) . (59)

Since all the modes are defined by the set of positive integers

(m,n), the positive quadrant of the wavenumber plane (kl,k3)

is sufficient for representing all the associated wavenumbers.

For a pressure field p(_,t) exciting the cylinder surface,

the "modal force" F (t) exciting the mode (m,n) is given by
mn

Finn(t) = p(x,t) Cmn _#mn(X) dx

cylinder
surface

(60)
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Detailed consideration of the dynamics of the isotropic

cylinder shows that, if the modal force Fmn(t) is given by

relation (61), the modal velocity Vmn(t) is proportional to

F (t), and the factor of proportionality or the modal
nln

admittance H (_) is given by relations (63) and (64)
Fan

Fmn(t) = F e -i_t , (61)

Vmn(t ) = Hmn(m) Fmn(t ) , (62)

-i

2 _ (63)Hmn = ( %n

2
= 4 os4e(_mna/C$) 2 = r + cV

mn
(6/,)

Here,V is the dimensionless frequency [relation (30)], andmn

(r,e) is the dimensionless wavenumber corresponding to the

wavenumber _ associated with the mode (mjn) [relations (59)

and (31) to (36)].

Seeking dynamical analogy with a simple harmonic oscillator,

we conceive of the mode (m,n) as a "modal oscillator" of mass M

and natural frequency _mn" Furthermore, owing to the orthogonality

of the mode shapes @mn(_), the total potential and kinetic

energies of vibration of the whole cylinder are equal to the

sum of the respective energies of the modal oscillators.

We note that, for this particular configuration of a cylinder

simply supported along its circumferential edges, the natural

frequencies _mn can be found from the resonance condition (37)

for the corresponding infinitely extended cylinder. In fact, the

modal force per unit area and the modal velocity are the spatial
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Fourier transforms of the total pressure and velocity fields.

Hence, we have

Hmn(_) = H(k,_)/A . (65)

Here, A is the cylinder surface area, H(_,_) is defined in

relation (28), and k is the wavenumber associated with the mode

(m,n). This equivalence between the dynamical properties of

infinite and finite structures is, of course, destroyed for the

clamped boundary conditions. In that case, there is some

increase in the natural frequencies of the lower modes.

Modal Representation for an Orthotropic or Fluid-Loaded

Cylinder. - For an orthotropic or a fluid-loaded cylinder simply

supported at its circumferential edges, the geometry of the

structure and the boundary conditions remain the same as those

for the isotropic cylinder discussed above. Therefore, the

modal shapes and the associated wavenumbers remain the same. As

a result, we can immediately obtain the complete representation

of the modal oscillators for the orthotropic or the fluid-loaded

cylinder from relation (65), by using the appropriate pressure-

to-veloclty admittance H(_,_) for the corresponding infinitely

extended system. Nothing more need be said about the orthotropic

case. For the case of fluid loading, we note that the effective

modal mass Mf now incorporates the mass-loading effect of the

fluid:

Mf = M(I + 8/r) (66)

Here, 8 is the fluid-loading parameter defined in relation

(54). Note that the liquid loading on a finite structure would
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tend to couple the structural modes. We have ignored this

consideration for the sake of simplicity and have consldered

the modes to remain uncoupled.

Modal Representation for a Flat Plate. - The modal

description for a flat rectangular plate simply supported along

its edges can be developed along exactly the same lines. The

only modification necessary is due to the change in the ortho-

gonal modal shapes @mn(_ ). For a flat plate, the modal shapes

_mn(_ ) are given by

@mn(_X) = sin(m_xl/_l) sin(n_x3/_ 3) , (67)

Here, $I and _3 are the edge lengths of the plate. In contrast

to a cylinder, odd numbers of wavelengths in the x 3 direction

are now possible, but there is only one mode shape Smn(_ ) for

each pair of integers (m,n). Owing to the change in _mn(_),

the normalizing constants c and the wavenumbers k associated
mn

with the modes change. Also, the admittance H(_,_) for the

corresponding infinite plate would have no contribution from

the membrane stresses. Hence, with the exception of relations

(57), (59), and (64), the modal description for a flat rectangular

plate (isotropic, orthotropic, or fluid-loaded) is the same

as that developed above for a cylinder.

2.3.2 Modal Density for a Cylinder and a Plate. - Modal

density n(_) is defined as the number of modes whose natural

frequencies lie in a unit radian frequency band around _. We

shall calculate the modal density for an othotropic cylinder

and a fluid-loaded isotropic cylinder. The modal densities for

the remaining structures can be derived from these.
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Modal Density for An Orthotropic Cylinder. - For an

orthotropic cylinder, the natural frequencies of the modes are

given by the resonance condition obtained from relation (51):

rb 4 4v32 = /_3 + cos em (68)

We define the ring frequency _r by the relation

cor = c3/a (69)

For a sufficiently long cylinder, the resonance locus at a

frequency below the ring frequency passes approximately through

the origin of the wavenumber plane. Figure 20 shows two

shematic representations of such a locus in the dimensionless

wavenumber plane (rb,Sb). The locus in solid line is determined

by the resonance condition (68); the idealized locus is a

combination of the approximate "membrane locus" and "bending

locus" derived from relation (68). These approximate loci

are:

v3 = coS2em,

or

tan28b = _l_3(l-v3)/_3_iv 3 , (70)

52



and

2 (71)
rb = v3c3 I/2 .

The sha:icd area in LiJe (rb,eb) plane under the idealized locus

is eas!ij seen to be [(_/2) - eb]rb2/2. Also, the area attributed

to eacl: pair of modes situated at the same location in the

(rb,_ _) ,_1_.,_,_is 2"_2a(_7_)l/23 /A. This immediately gives the

approxL:.saSe number N(_) of" modes with natural frequencies less

than _:

N(co) = (A_/2sr2_c_)[(w/2) - eb ] for _ cor , (72)

where 8b is given by relation (70), A is the total surface area

of the cylinder, and _ : (_i_3)I/2 is the (geometric) mean

radius of gyration.

Approximating the resonance condition (68) by relation (71),

one can similarly establish that, for frequencies higher than the

ring frequency,

for _ _ _r ' (73)

The average value of modal density over a frequency band is

n(co) = [N(co2) - N(col)]/(co 2 - col) , (74)
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where _2 and e I are the upper and lower frequency limits of

the band. Since the modal density is found from the difference

between the cumulative modal counts N(_) at two frequenciesj

the positive error introduced in relation (72) owing to the

idealization of the resonance condition (6G) (see Fig. 20) is

largely removed. The resulting estimates for the modal density

are found to agree very well with the more detailed calculations 3-_/

Modal Density for An Orthotropic Plate. - For an

orthotropic rectangular platej the membrane effects are absent

and the odd-numbered modes are possible in the x3 direction

[compare relations (57) and (67)]. However_ there is only one

independent mode for each pair of integers (m,n). Therefore,

the cumulative modal count N(_) at all frequencies is the same

as that given in relation (73).

Modal Density for An Isotropic Cylinder. - It is easy

to specialize the above results for isotropic structures. For

example, for an isotropic cylinder relations (72) and (73)

simplify to

N(o_) = (_iv/_) sin -I (v) for v _ 1

= _iv/2_ for v _ I (75)

Here, _i is the axial length of the cD_lindcr, and v and _ are

given by relations (30) and (36). Calculation of' the modal

density n(_) from relations (75) and (7%) shows that, below

the ring frequency _r = C_/a the modal density increases with

frequency. It attains its peak value at tl_e ring frequency

and maintains a constant value, rougi_ly two-thirds of the peak
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value, above the ring frequency. This concentration of modes

around the ring frequency is due solely to the fact that the

ring frequency separates the two essentially different types

of loci of constant resonance frequency in the (r,e) plane

(see Fig. 28).

Modal Density for a Fluid-Loaded Cylinder. - For a

fluid-loaded cylinder, the transition in the nature of the

resonance loci occurs at a frequency lower than the ring frequency

c_/a [see Fig. 19 and the remarks after relation (55)]. For

most practical situations of interest, the numerical values

are such that the frequency range below this transition frequency

(usually 30 Hz or lower for large launch vehicles) is of little

interest. For the more interesting higher-frequency region,

we estimate the modal density by considering the "bending-controlled"

approximation of the resonance condition (55); that is,

4
v2(l + Z/r) = r (76)

This fifth-order equation in r can be solved in terms of v by

suitable approximations in different frequency ranges. For

example, in the low-frequency range,_/r is greater than I; in

the intermediate-frequency range, Q/r is roughly equal to i;

and in the high-frequency range, Q/r is negligible compared with

I. These frequency ranges and approximate solutions for r can

be found easily and are not detailed here. The cumulative modal

count N(_) in terms of r is given by

N(c_) = _1r2/2_ . (77)

Finally, the modal density n(_) can be found from relation (74).
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2.4 Acoustical Radiation Properties of Structural Modes

2.4.1 Introduction. - In this section, we discuss the

radiation damping of individual modes and the resulting structural

radiation-loss factor in frequency bands.

Definition of Radiation Resistance. - Consider the

vibration at frequency _ of the mode (m,n) of a finite structure.

The air surrounding the structure would tend to impede this

motion. Some of the vibratory energy of the mode will be con-

verted into sound waves and propagate away from the structure

into the surrounding space. Seeking analogy with a simple

oscillator, we associate this power loss with a dissipating

mechanism -- namely, radiation resistance Rra d -- which is

characteristic of the shape of the mode (m,n) and the frequency

of vibration _ _--_/ Thus we define the modal radiation

resistance Rrad(_) as the ratio of the average power radiated

due to the vibration of the mode at frequency _ to the mean-

squared modal velocity at the same frequency.

Relation Between Radiation Resistance and Couplin_

Parameter. - Now consider the same structure to be surrounded

by a diffuse sound field. If the pressure at the surface of

the structure is p(_,t), the modal force Fmn(t ) exciting the

mode (m,n) will be given by relation (60). Let p(_,_) and

Fmn(_ ) be the components of the pressure field and the modal

force at frequency e. F (e), which determines the vibration
mn

at frequency e of the mode (m,n), depends on the extent of

"coupling" or "spatial match" between p(_,_) and the modal

shape $mn(_ _. It has been shown, from the reciprocity principle,

that the modal radiation resistance Rra d defined aboveo=iis

directly related to the magnitude of this coupling 0-2/.

Classification of Modes. - At a particular frequency

we can classify various modes as acoustically fast modes or

as strip or corner acoustically slow modes, depending on the
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nature of this coupling. The component of the diffuse sound

field exciting any mode at frequency _ would consist of a

multitude of uncorrelated plane waves propagating in all possible

directions. The wavenumber k associated with each wave would,
a

of course, be given by

k = _/c , (78)
a

where c is the speed of sound. The projection of this

component of the diffuse field on the structure surface would

consist of plane waves (propagating in different directions on

the structure surface) with wavenumbers ranging from zero to

ka. If the magnitude of the wavenumber _ associated with a

mode is less than ka(aS with mode A in Fig. 21), a perfect

spatial match would exist between the mode shape and some component

of the projected excitation field. Such a mode is then called an

acoustically fast mode, since the associated phase velocity

_/l_I is higher than the sound speed c. An acoustically fast

mode radiates and accepts acoustical energy over the entire

surface of the structure. It is, therefore, called a "surface"

mode also. Modes B, C, D, and E, in Fig. 21, are called

acoustically slow modes, since for these modes the magnitude of

the associated phase velocity of vibration is less than the

sound speed c. All acoustically slow modes are characterized by,

at best, a partial spatial match with the projected acoustic

pressure field. The interaction between an acoustically slow

mode and the sound field is restricted to a narrow strip of the

structure surface near some portion of the structure boundary

32, 36/. An acoustically slow mode is classified in accordance

with the portion of the structure boundary near which the mode

interacts with the sound field. For example, in Fig. 21, mode B

is called an "acoustically slow edge-i mode" because it interacts
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with the sound field near the structure edges parallel to the

x I direction. Note that, for an acoustically slow edge-I mode,

k3 > k a but kI < ka. The names given to acoustically slow modes

C,D, and E, in Fig. 21, have similar interpretations.

2.4.2 Single-Mode Radiation Resistance for a Flat Plate

or a Cylinder. - Here, essentially, we quote some of the results

derived elsewhere 36_ 37/. These results are presented in terms

of the modal radiation efficiency Gra d , which is related to the

modal radiation resistance by the relation

Gra d : Rrad/pCA • (79)

Here, pc is the characteristic acoustic impedance, and A is the

surface area of the structure.

An Isotropic Flat Plate. - At any frequency _, the

radiation efficiency of an acoustically fast (AF) mode of an

isotropic, rectangular flat plate of size (_i,$3) is given

by36_. /

-1/2
Gra d = (I- k2/ka 2)

Here, k is the magnitude of the wavenumber vector (kl,k3)

associated with the mode and k is the acoustic wavenumber
a

[relation (78)].

In deriving the above relation, the effects of fluid load-

ing by the air have been neglected. When such loading is

considered, the radiation efficiency for an AF mode can be

approximated by
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--1 (so)
_rad

The radiation efficiency for an acoustically slow (AS)

edge-3 mode (see Fig. 21) is given by

_rad3 = (ka/kl_l) (k I

3/2
- 2)/(k2- k 2) (81)2 + k2 ka a

The radiation efficiency _radl, for an AS edge-I mode, is

obtained from relation (81) by replacing _i by _3 and k I by k3.

The radiation efficiency for AS corner modes is generally quite

small and is ignored in this report.

An Orthotro_ic or Fluid-Loaded Plate. - One can look

upon the modal radiation efficiency (for vibration at any

frequency _) as a spatial or geometric property of the modal

shape _mn(X). Since, for a mode with an associated wavenumber

(kl,k3) , the modal shape does not change if the plate is ortho-

tropic or fluid-loaded, the modal radiation efficiency (for

vibration at the same frequency _) for these cases also is

given by relations (80) and (81).

An Isotropic Cylinder. - Exact derivation of the modal

radiation efficiencies for a cylinder is quite cumbersome.

However, a direct and elegant method has been evolved to solve

the problem 36, 37/ First, the radiation efficiency of a mode

for a flat plate is shown to be determined by a process of

volume-velocity cancellation between adjoining "cells" of the

vibration pattern of the mode 36-_/. Second, by studying similar

volume-velocity-cancellation effects for the modes on a

cylinder, it has been shown that the radiation efficiencies

for the AF and the AS edge-3 modes of a cylinder are approximately
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given by relations (80) and (81), if one interprets the cylinder

as an "equivalent plate" of dimensions (_i,_3 = 2_a). Here,

_I is the axial length of the cylinder and a is its radius. The

difference between the geometry of a cylinder and a plate, how-

ever, shows up in the radiation efficiency for the AS edge-i

modes. For a cylinder, there really is no "edge" parallel to

the axial direction, hence the AS edge-I modes are acoustically

"short-circuited" and their radiation efficiency is negligible o__!/.

An Orthotropic or Fluid-Loaded Cylinder. - The 'equiva-

lent plate" analogy described above also applies when an ortho-

tropic or fluid-loaded cylinder is compared with an "equivalent"

orthotropic or fluid loaded plate.

2.4.3 Average Radiation Resistance for a Flat Plate or

a Cylinder. - For many situations of interest, most of the

vibration of a structure in any narrow frequency bandwidth con-

sists of the vibration of the structural modes with their

resonance frequencies in the same bandwidth. This will happen

when the typical "modal bandwidth" is small and when there are

resonant modes in each frequency band of investigation. For

such multimodal resonant vibration, we define the structural

radiation resistance in a frequency bandwidth as the average of

the radiation resistance of the resonant modes in the same band-

width, evaluated at their common resonance frequency. As we

shall see in Section 3, the average radiation resistance thus

found enters directly into the estimate for the structural

response to a diffuse sound field.

An Isotropic Flat Plate. - Calculations for the

average radiation resistance for an isotropic flat rectangular

plate have already been performed _--_/. The resonance condition

for the plate is obtained by specializing relation (37). This

condition is
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= _c_k2 . (82)

For a mode to be acoustically fast at its own natural

frequency, it must resonate above the acoustic critical frequency

_c" This, in fact, is how we define _c" From relations (78) and

(82), it follows that

2
_c : c /_c_ . (83)

The average radiation efficiency <_rad > for a flat plate can be

expressed in terms of the acoustic critical frequency 36-_/. If

= (_l_c)112, (84)

then,

<Grad> = i for _ _ 1 (85)

: (Pr_c/A)g2(_) for _ < i , (86)

g2(c_) = (2"n-)-2[(1-c. 2) ,_n[(l+e)/(1-_)] + 2e](1-c_2) -3/2 . (87)

Here,_ c = 2_c/_ c is the acoustic wavelength at the critical

frequency and Pr = 2(_i ÷ _3 ) is the plate perimeter. Relation

(85) is clearly the average of the radiation efficiency of AF
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modes [relation (80)] lying along the resonance locus which is

of a circle in the wavenumber plane (kl,k3). Relationa quarter

(86) is a similar average for the AS edge-I and AS edge-3 modes.
The small contribution from the corner modes is neglected here.

The "edge effect" is seen to show up in the appearance of the

perimeter Pr"

A Fluid-Loaded Plate. - If the flat rectangular plate

discussed above is loaded by a liquid on one side, the resonance

condition changes to the one given by relation (76). As discussed

before, the single-mode radiation efficiencies remain the same.

Also, the geometry of the situation in the wavenumber plane

remains the same, since the resonance loci are still circles.

Thus we can obtain <Crad > for the case of fluid loading by using

relations (85) to (87) if we express relation (84) in terms of

the wavenumbers involved; that is,

: ka/k . (88)

In fact, for the isotropic (not liquid-loaded) case, relation

(84) was obtained from relation (88) by using relations (78),

(82), and (83). In the present case, similar elimination of

the wavenumbers must be accomplished by using relations (78) and

(76). Approximate methods of solving the resonance equation

(76) are briefly explained in the discussion following relation

(76). The acoustic critical frequency _c is defined by the

condition k = ka, or _ : i.

An Orthotro_ic Flat Plate. - For an orthotropic flat

plate, the resonance loci become ellipses in the wavenumber

plane (kl,k3). The resonance condition, obtained from relation

(51) , is
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2
2 (_ C_kl 2 + _3c_k32) (89)

For the case _i > _3' Fig. 22 schematically shows the acoustic
wavenumber locus k = [_I = ka = e/c, and the resonance locus
in the wavenumber plane for five different frequencies.* The

higher critical frequency _c3' above which all the modes are

acoustically fast, and the lower critical frequency _cl' below
which all the modes are acoustically slow, are defined by

2 c$_c3 = c /K:3 , (9o)

_cl = C2/KIC_ " (91)

For _ > _c3' <_rad > is clearly i. For _ < _c3' the integrations

required in averaging the modal radiation efficiency are unfor-

tunately quite involved. The task must therefore be delegated

to the computer. The calculation must average the radiation

efficiency of each class of modes by taking a few representative

points along the appropriate part of the resonance locus.

The situation for the case _3 > KI can easily be described

along similar lines.

An Isotro_ic Cylinder Above Its Rin$ Frequency. - Now

consider an isotropic cylinder. Above the ring frequency

_r = c_/a, the membrane effects are negligible, and the resonance

* In connection with Fig. 22 and similar situations elsewhere,

note that, when we discuss a resonance locus at a particular

frequency _ or modes resonating at the same frequency, we imply a
finite bandwidth of frequency and corresponding resonance "strips"

in the wavenumber plane. It is simpler to use the pure-tone

frequency variable and the resonance "lines" in the wavenumber

plane. The calculations based on this procedure, however, are

applicable only to finite bandwidths of frequency.
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condition for the cylinder becomes the same as that for an

isotropic flat plate [see relations (37) - (39) and the related

discussion]. Thus the "equivalent" plate analogy (described in

connection with the single-mode radiation efficiency for a

cylinder) becomes complete and we can use relations (82) to

(87) for the cylinder as well. There is, however, one point

of departure. For the cylinder, the perimeter P in relation
r

(86) is to be taken as

Pr : 2_3 = 4_a . (92)

Here, a is the radius of the cylinder. The contribution to

the perimeter from the "axial" sides of length _i is omitted,

since, as mentioned above, the axial strip modes (or AS edge-I

modes) are acoustically short-circuited, and their radiation

efficiency is negligible 3-_/.

An Isotro_ic Cylinder Below Its Ring Frequency. -

The flat plate equivalence described above is restricted to

frequencies above the ring frequency. Below the ring frequency,

membrane stresses give rise to some AF modes. The quantitative

estimate of the radiation efficiency for this frequency range

can be obtained as a special case of the similar estimate for

the orthotropic cylinder discussed below.

A Fluid-Loaded Cylinder. - For an isotropic cylinder

filled with a liquid, a similar "equivalent plate" analogy

exists with the corresponding flat plate loaded with the same

liquid. Hence, we can use relations (76), (85) - (88), and

(92) for estimation of <grad>. For the case of liquid loading,

however, the plate analogy remains approximately valid well

below the frequency c$/a. As discussed in Section 2.2.3, for

the frequency range of usual interest, the membrane effects are
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almost totally suppressed by the fluid loading, and the

resonance loci in the wavenumber plane become more or less

circular. Thus, for a liquid-filled cylinder, membrane effects

fail to give rise to any AF modes.

An 0rthotropic Cylinder Above Its Ring Frequency. -

For an orthotropic cylinder, above the ring frequency
r

[defined by relation (69)], the same kind of plate analogy exists

with the corresponding orthotropic plate. Thus relations

(89) - (91) are equally valid for the cylinder. Below the

higher critical frequency, the average radiation efficiency

<arad> must once again be evaluated by a computer; however,

in this case, the contribution to the radiation efficiency from

the corner modes as well as axial strip modes is neglected.

Density of AF Modes Below the Ring Frequency of An

0rthotropic Cylinder. - Below the ring frequency _r = c3/a'

the membrane stresses induced by the curvature of the cylinder

increase the potential energy of vibration and, hence, also

the frequency and the phase velocity of free vibration at a

particular wavenumber (see Sections 2.2.1 and 2.2.2). In

terms of the geometry of the resonance loci in the wavenumber

plane,the resonance locl in the "membrane region" of the wave-

number plane are radial straight lines (Fig.17). Therefore, below

the ring frequency, there will always be some acoustically fast

modes -- that is, resonant modes with wavenumber magnitude less

than the acoustic wavenumber k a at the same (resonance) frequency.

For most cases of interest, the acoustical critical frequencies

_cl and _c3 are considerably higher than the ring frequency

_r" With such a situation, for frequencies below the ring

frequency, the acoustic wavenumber locus k a = _/c will intersect

the resonance locus only in the membrane region of the wavenumber

plane. Figure 23(a) shows the acoustic wavenumber locus and

the resonance locus in the dimensionless wavenumber plane (rm, em)

for such a case. The resonance locus is approximately given

(see Section 2.2.2) by
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v32 = c°S4em" (93)

Owing to the transformation of the coordinates, the acoustic

wavenumber locus becomes an ellipse:

rm2[ (coS2em/C_ I) + (sin2em/C_S) ] = (c3V3/c)2 . (94)

The coordinates of the point of intersection P in Fig. 23(a)

can be easily obtained by solving relations (93) and (94)

simultaneously. Along straight line 0P, then, lie the AF modes

resonating at the dimensionless frequency v3. The boundary in

the (rm, em) plane, which encloses the region of all such AF

modes below the ring frequency (that is, 0 _ v3 _ I), is shown

by the solid curve in Fig. 23(b). This is the locus of point

P as v3 varies between 0 and i. To simplify the calculations,

this region of AF modes is approximated by an outer bound; this

is the locus of the approximate point of intersection P'

by neglecting the term (sin2em)/_ 3obtained in relation (94).

This approximation is not too unreasonable for 0 _ em _ _/4,

the region in which most (roughly 80_) of the AF modes lie.

The approximate locus is a circle:

rm = (c3_II/2/c) cose m (95)

The number NAF(_) of AF modes resonating below frequency _ is

then approximately given by the ratio of the shaded area in

Fig. 23(b) to the area attributed to a pair of modes situated

at the same location in the (rm,em) plane.
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= 1/2
NAF (e) (_i/2w-a)(03/c)2(_i/_3) (96)

- cos - - ]1/2 ].[w/2 -I(v31/2) [V3(l v3)

Here, _i and a are the axial length and the radius of the

cylinder, and the rest of the symbols are defined in Section

2.2.2.

The density nAF(e) of the acoustically fast modes below

the ring frequency, based on a narrow frequency band, is then

given by

nAF(e) = [NAF(e2) - NAF(el)]/(e 2 -el) (97)

Here, e 2 and e I are the upper and lower frequencies of the

band. In finding the difference between the cumulative modal

counts, most of the error introduced in the range _/4 _ 8 _ _/2
m

due to the approximation of the locus of point P is removed. The

resulting estimate for the modal density of the AF modes below

the ring frequency is found to agree very well with the more

detailed calculations 3-_/.

Radiation Resistance of An Orthotropic Cylinder

Below Its Ring Frequency. - Continuing with the orthotropic

cylinder, at any frequency below the ring frequency, most of

the AS modes are of the edge-I type with negligible radiation

efficiency. Therefore, an approximate estimate of the average

radiation efficiency for an orthotropic cylinder below its ring

frequency is given by
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<Vrad> = nAF(_)/n(_ ) , (98)

where the modal densities nAF(_) and n(_) are given by relations
(97) and (74). Specialization of these results for an isotropic

cylinder is straight forward.

The Average Radiation Loss Factor. - Finally, the

average radiation loss factor <_rad(_)> at any frequency _ is

defined by

<Brad(e)> = Rrad/_M = pcA<_rad>/_M •
(99)

Here pc is the characeristic acoustic impedance of the acoustic

medium, A is the surface area of the structure, and M is the

typical modal mass for the modes resonating near frequency _.
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SECTION 3

STRUCTURAL VIBRATION INDUCED BY THE

ACOUSTIC AND AERODYNAMIC ENVIRONMENTS

3.1 Introduction

In this section, we obtain quantitative estimates for the

vibration levels set up in the structural elements studied in

Section 2, when exposed to one or more of the environments

studied in Section 1. Most of the discussion in this section

is restricted to resonant vibration. As pointed out before,

if there are enough resonant modes in any frequency band of

interest, and if the dissipation losses (which may be due to

internal damping in the structure material, losses at the

structural joints, and losses due to the power flow into the

surrounding medium and the neighboring structural elements) are

small compared with the total energy of vibration, the resonant

response will dominate the forced response.

Also, structural or modal vibration at resonance is

controlled by resistive or dissipative mechanisms associated

with the vibration. Since the exciting force and response

velocity are in phase for resonant vibration, such vibration

is accompanied by real power input from the environment into

the structure. The vibration attains a steady state when the

power input from the exciting force is equal to the power

dissipated in the resistive force. This description provides

us with a simple way of estimating structural response. We

first calculate and sum up the power input to resonant modes

in different frequency bands and then obtain the velocity

response for the whole structure by equating the dissipated

power and the input power in different frequency bands.

Now, in some instances, a fraction of the resonant modes

in a frequency band would find the best possible "spatial match"

or "coincidence" with the excitation field from the environment.
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The power input from the excitation field to these coincident

and resonant modes would dominate the power input to the rest

of the resonant modes. For example, in Fig. 22(c) where the

locus of modes resonating between two critical frequencies for

an orthotropic plate are shown the acoustically critical modes

in a small segment of the resonance locus about the intersection

point P find the maximal coincidence with the acoustic field.

However, owing to the fluid-loading effects and the fact that

the strength of the acoustic excitation for the remaining AF

modes does not drop too sharply, the power input to the acous-

tically critical modes does not dominate the power input to the

rest of the resonant modes. The situation, as we shall see,

changes somewhat for the excitation from a turbulent boundary

layer (TBL).

3.2 Excitation from a Turbulent Boundary Layer

3.2.1 Introduction. - Consider a fully developed, spatially

homogeneous turbulent boundary layer over an isotropic cylinder.

We assume that the associated pressure fluctuations are convected

along the generators of the cylinder at a constant speed U c. A

sufficiently valid and compact description of the statistical

properties of these pressure fluctuations is given by the

combined wavenumber and frequency spectrum @p(_,_) [relation

(22)]. At any frequency _, most of the excitation from the TBL

is concentrated in a narrow strip in the wavenumber plane (kl,k3).

The width of this strip in the k3 direction depends on the eddy

decay time or the temporal spectrum • (_). As shown in Fig 24,
m

this "excitation strip" divides the wavenumber plane into regions

of hydrodynamically fast (HF), hydrodynamically critical (HC),

and hydrodynamically slow (HS) modes. These modes are determined

by whether the trace in the axial direction of the phase velocity

of vibration at frequency _ for a particular mode is higher than,

equal to, or less than the convection velocity U .
C
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The frequency range is divided by two critical frequencies,

the ring frequency _r and the hydrodynamic critical frequency

_h" The latter is given by

% _-uc2/ c . (ioo)

Almost invariably, the hydrodynamic critical frequency is higher

than the ring frequency for structures of current interest.

For _ < _h' the strip of excitation in the wavenumber plane

(shown in Fig. 24) intersects the resonance locus; for _ > _h

it does not. For _ > _r" the bending stresses are dominant and

the cylinder behaves like a flat plate; for _ < _r' the membrane

stresses also become important. Finally, in the wavenumber plane

(kl,k3), the resonance locus at any frequency _ determines the

regions of the nonresonant, mass-controlled and stiffness-

controlled modes and the resonant, resistance-controlled modes.

The situations arising in the different frequency ranges, and the

classification of modes in the wavenumber plane, are shown in

Fog. 24. Note that, below the ring frequency _r' the HC resonant

modes are obtained in the "membrane region" as well as the

"bending region" of the wavenumber plane. Only the former of

these is shown in Fig. 24(b).

Since, in the wavenumber plane, the domain of excitation

at any frequency is quite narrow and sharply defined, the HC modes

find by far the best spatial match or coincidence with the

excitation field. The excitation of the HS and HF modes arises

from relatively secondary effects. The first of these effects

is due to the extension of the excitation field beyond the narrow

strip defining the coincident region in the wavenumber plane.

These "tails" of the excitation field [see the variation of

(k,e) in Fig. 24(a)] are clearly governed by the temporal
p --

fluctuations [that is, the spectrum • (_)] of the pressure field
m
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in the TBL, discussed in Section I. The second effect is due

to the finite extent of any real structure. If the structure

has many edges and discontinuities (i.e., a small mean free

path), the edge effects will contribute to some coupling with
the excitation field. The situation in some sense will be

analogous to that for the acoustically slow modes B, C, D, and
E, in Fig. 21. On the average, coupling due to edge effects

will be higher for the HS modes than for the HF modes. The

excitation of HF and HS modes from these secondary effects is,

in general, found to be quite small compared with the excitation

of HC modes. Thus, most of the multimodal resonant response is

the result of power flow from the TBL pressure field into HC

resonant modes. This can easily be found from an analysis of

a corresponding structure of infinite extent 3-_/

In estimating the structural excitation from the TBL pressure

field, we have disregarded the detailed variation of the

associated radiation resistance. (This will be important

chiefly for resulting sound radiation) In this respect, note that,

if the convection velocity U is subsonic, all the HC resonant
C

modes will be acoustically slow [see Figs. 24(a) and 24(b)].

For supersonic convection velocities, the HC resonant modes

which are also acoustically fast will lie only in the frequency

rante _h < _ < _c' where _h and _c are the hydrodynamic and the

acoustic critical frequencies.

The above qualitative description and the response estimates

that follow are valid for any fluctuating pressure field that

has similar convective and decaying properties. As we saw in

Section i, the fluctuating pressure fields associated with the

conditions of separated flow or wake impingement can be described

approximately by such properties. Therefore, the estimates of

structural response for these types of excitation can easily be

found from the formulas developed below for the TBL excitation.
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3.2.2 Response of an Isotropic Cylinder or Flat Plate

of Infinite Extent to a TBL Pressure Field. - The location

of the HC resonant wavenumbers in the dimensionless wavenumber

plane (r,@) [see Section 2.2.1] is clearly given by the inter-

section of the resonance locus [relation (37)] with the center

line of the excitation strip. The latter is represented by

: kluc (lOi)

or

V = r _ COS@ , (102)

where

A = (Uc/C_)(a/_)l/2 (i03)

Thus the locus of the HC resonant wavenumber is given by

4
r2k2cos2e = r + cos4e . (104)

The two "concidence loci" that are valid, respectively,

in the "bending region" and the "membrane region" of the (r,8)

plane are obtained approximately by ignoring one or the other of

the two terms on the rlght-hand side of relation (104). The

resulting coincidence loci are circles:
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r = _ cose (105)

for the bending or the flat plate behavior; and

r = cose/k (lO6)

for the membrane behavior.

These simple approximations for the coincidence loci, of

course, hold only for the case when the dimensionless parameter

> i. This covers a surprisingly large number of situations in

launch-vehicle response estimation. Figures 25 and 26 show the

two coincidence loci and the corresponding resonance loci in

the wavenumber plane (kl,k3). The subscripts p and c are intro-

duced to indicate that, in Fig. 25, the magnitude k of the HC
P

resonant wavenumber is determined by the condition of resonance

and its direction e is determined by the condition of coincidence;
c

whereas, in Fig. 26, the direction e is determined by resonance,
P

and the magnitude k by coincidence.
c

Note that, in the present analysis for infinitely extended

structures, the wavenumber components kl,k 3 and the frequency

have the full range of -_ to +_. Thus, for negative

frequencies m, there will be similar coincidence loci in the

lower half of the wavenumber plane. Also note that, although

the circumference of a cylinder is always finite and the resulting

wavenumbers k3 always discrete, we shall assume k3 to vary

continuously. This essentially amounts to replacing every

summation over the variable k3 by the corresponding integral,

and does not greatly influence the response estimates.

The radial velocity field v(_,t) on the cylinder surface is

related to the exciting pressure field by the relation,
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= Ill pCx,,t,_JJJ " " h(x x' t- t') dx' dt'V(Xjt)_ m _ , •

(107)

Here, h(_,t) is the Green's function, or the Fourier transform,

of H(_,_) [relation (28)]. Multiplying each side of relation

(107) by -p(_,t) gives _(_,t), the instantaneous power input per

unit area to the cylinder at time t and location _. The combined

wavenumber and frequency spectrum @ (_,_) for this power input

can easily be derived 4_2/:

-- . (108)

Finally, the spectrum H(_) for power input per unit area at any

frequency _ can be found by integrating relation (108) over the

wavenumber variable k. The integration over the singularity of

the wave admittance H(_,_) gives essentially the contribution

from the resonant or free wavenumber. The integration over the

slngularity(or the peak) of the pressure spectrum @p(_,_) further

restricts the location of the chief contribution of the integral

to be near the coincidence locus in the wavenumber space. Even

though the real part of this power input is more or less

independent of the magnitude of the dissipation, a suitably

defined dissipation constant _ must be introduced in H(_,_) in

the formal process of integration over the singularity• Thus

the term v2 in relation (28) is replaced by the term V2(l+i_) _

The power input to the cylinder per unit area thus obtained

consists of two parts, Hb(_) and _m(_), corresponding, to the

coincidence loci in the"bending region" and the "membrane region"

respectively, of the wavenumber plane. The final expressions for

these are
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Hb (_) = (wph2/PsUc)@f(_)@3(k psinec)/sin(2ec)

for _ _< _h '
(109)

Hm(_ ) = (_ph2/PsUc)@f(_)@3(kcsinep)/Sin(2ep)

for co _< cor " (ii0)

Here, (kp,8c) or (kc,ep) is the appropriate HC resonant wavenumber

at frequency co. The rest of the nomenclature is that of Sections

i and 2. The total power input per unit area is then given

by

]](_) : IIb(_ ) + ]]m(_) for _ _r (IIi)

= _b(0_) for _r < _ _< _h " (112)

We can use the same procedure for obtaining an expression

for power input for resonant vibration above the hydrodynamic

critical frequency _h [Fig. 24(c)]. The controlling process in

this regime will be the temporal fluctuations of the exciting

pressure field _-%_/. For the situations of interest in launch-

vehicle dynamics, this aspect of the problem is found to be

unimportant as compared with that of the hydrodynamic coincidence.

For resonant vibration, the power input from the excitation

is equal to the power dissipated. Equating the two, one obtains

the velocity spectrum V(_), where
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V(co) = ll(co)/ps_]sco • (i13)

Here, ms is the total cylinder-loss factor. The acceleration

spectrum A(co) is related to the velocity spectrum by the

relation

A(CO) : co2V(CO) (i14)

A rough estimate of the maximum stress level at the surface

of the cylinder is obtained: (a) by assuming a linear variation

of stress, over the thickness h of the cylinder, for flexural

vibration controlled by the bending stresses; (b) and by

assuming a constant value of stress over h for in-plane or

longitudinal vibration controlled by the membrane stresses.

Balancing the potential and kinetic energies for the resonant

vibration, the stress-level spectrum S(co) is then related to

the velocity spectrum 46--_ by

Sm(co) = 4 c_ 2 pm 2 Vm(_ ) , (i15)

Sb(co) = 12 c_ 2 pm 2 V b(co) (ii6)

Here, as usual, the subscripts b and m refer to the components of

the velocity and the stress spectra controlled by the bending or

the membrane stresses. The density for the cylinder material is Pm"

The above estimates ignore any stress concentrations due to the

presence of the boundaries or the occurrence of "hot spotsJ'

All the results and the related discussion in this subsection

hol_ _I_o for an Isotroolc flat plate, except that in this case

the membrane stresses(and all the quantities with subscript m)

are to be ignored.
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Note that all the spectra [relations (109) to (116)] here

are two-sided, with the range of frequency _ from -_ to +_.

Assuming that all the quantities above are in units of feet, pounds

(weight), and seconds, their conversion to third-octave-band
levels on the Hertz frequency basis is performed as follows:

SPL dB r__e0.0002 sbar = 132 + I0 logf + i0 log <ph2@f(_)>, (I17)

PWL dB re 10-12W = 126 + I0 logf + i0 log <_(_)>, (ll8)

VL dB re 1 cm/sec = 34 + I0 logf + I0 log <V(_)>, (119)

AL dB re 1 g = -25.5 + i0 logf + i0 log <A(_)>, (120)

SL dB re Young's modulus E

= 4.5 + I0 logf + i0 log <S(m)/E2> . (12l)

Here, SPL is the excitation pressure level, PWL the power input

level, VL the velocity level, AL the acceleration level, and SL

the stress level in a third-octave band around frequency f Hz.

These levels are in decibels, with respect to the standard units

specified above. The brackets around the corresponding two-sided

spectrum on the right-hand side of each relation indicates the

average value of this spectrum over a third-octave band (in

radian frequency) centered around the frequency e = 2vf. In this

connection, note that the singularities in relations (109) and

(ii0) at their respective critical frequencies _h and _r integrate

out by the process of averaging over frequency bands.
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3.2.3 Response of an 0rthotropic Cylinder or Flat Plate

of Infinite Extent to a TBL Pressure Field. - The coincidence

loci in this case are determined by the intersection point in

the wavenumber plane of the "excitation locus" [relation(lOl)]

and the resonance locus [relation(68)]. The two coincidence

loci, which are controlled by the bending or the membrane

behavior of the cylinder, are best described in their respective

dimensionless wavenumber planes, the (rb,e b) plane or the

(rm, em) plane. The coincidence loci are:

rb = k b cose b

1/2
(122)

for the bending behavior,

rm = cOSem/_ m

km = Uc/C3_I I/2 (123)

for the membrane behavior.

The procedure for determining the two componentS,Hm(_ ) and

Eb(_ ), of the power input per unit area is exactly the same as

for the isotropic case, except that in this case the integration of

relation (108) over the wavenumber variables is performed in the

dimensionless wavenumber plane appropriate to the power input

component. The final results are:
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Hb(co) = (v ph2/PsUc )(_]/_3)I/2@f(co)@3 [rbpsin(ebc)/(a_3)I/2]/sin(2ebc)"

for co_ coh' (124)

nm [co) = (v ph2/PsUc ) (al/a3) i/2_f(co)_3[ rmcSin (em p )/aa31/2 ]/sin( 2emp )

1or co _< ,cor' (125)

_h = Uc2/_IC_ ' (126)

cor = c3/a " (127)

Here, (rbp,ebc) and (rmc,emp) are the appropriate dimensionless

HC resonant wavenumbers. The subscript b or m refers to the

bending or the membrane region of the wavenumber plane. The

interpretation for the subscripts p and c is the same as in the

remarks after relation (106) and in Figs. 25 and 26.

Relations (IIi) to (121) and the related discussion for

the isotropic structure in Section 3.2.2 apply equally well

for the orthotropic structure.

3.2.4 Response of an Isotropic_ Liquid-Loaded Cylinder

or Flat Plate of Infinite Extent to a TBL Pressure Field. - As

discussed in section 2.2.3, for most situations of interest,

the presence of a liquid inside an infinitely long cylinder has

essentially a mass-loading effect. For a finite structure, the

liquid tends to couple the modes due to the edge effects. Our

Justification for ignoring this complication has been this: The
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simple analysis presented below for an infinite cylinder shows

that the mass-loading effect of the liquid alone is responsible

for reducing the vibration levels (from the corresponding levels

for the empty cylinder) by roughly 5 to 7 dB. Any refinement in

the analysis to account for the modal coupling and other edge

effects would thus be a refinement in the estimate of response

levels which are, in any case, less critical than those for the

corresponding empty structure.

The development of the analysis for the simplified case of

the infinitely long, fluid-loaded cylinder proceeds along the

lines of the previous two subsections. The coincidence loci
in the dimensionless wavenumber plane (r,e) are determined by

the intersection of the "excitation locus" [relations (102),

(103)] and the resonance locus [relation (55)]. Therefore, the

loci are given approximately by

r-- [ 2(i+ 1/2 cose
for the bendin_ behavior
i.e. r4 >> cos-e , (128)

and

r = [A2(l + D/r)]-1/2 cose for the membrane behavior

i e cos4e >> r4
co (129)

where A is the dimensionless variable given by relation (103).

The coincidence loci are no longer circles. Note that the

largest frequency _f for which coincidence is possible in the

membrane region of the (r,e) plane is no longer the same as the

ring frequency _r = c_/a. To estimate ef, we assume that

G/r >> l, since, for vibration at relatively low frequencies,

the associated wavenumber r is also generally small. This
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assumption amounts to ignoring the mass loading due to the

cylinder material, since it is negligible in comparison with
the mass loading due to fluid in the cylinder. Under this

simplification, relations (102) and (129) immediately yield

_f = (c_/a)2ps/PoUc • (130)

For an aluminum cylinder 33 ft in diameter and 180 mil thick,

filled with liquid oxygen, and for a convection velocity Uc of
i000 ft/sec, _f works out to be 35 rad/sec, or roughly 6 Hz, a
very low frequency indeed. Thus, for most situations and frequency

ranges of interest, a liquid-filled cylinder responds like a

llquid-loaded plate. The discussion here supplements the
discussions in connection with Fig. 19 and relations (55) and

(76).

Simpler formulas for the coincidence loci and the hydro-

dynamic critical frequency _h can be obtained similarly by
approximations descriSed in connection with relation (76).

The power input formulas are approximately given by

Hb(_) _ [_ ph2/(ps+Po/kp)Uc]_f(e)¢3(kpsinec )/sin(2ec )

for _< _h' (131)

Em(_) = [v ph2/(ps+Po/kc)Uc]_f(_)¢3(kcsinep)/Sin(2ep)

for _ _<_f. (132)
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Here, (kp,ec) or (kc,ep) is once again the HC resonant wavenumber.
In addition to all the implicit effects of the liquid loading,

such as changes in the resonance frequencies and the suppression

of the membrane effects, the additional mass-loading effect of

the fluid is seen to appear explicitly in the term Po/kp or
 o/kc •

The remaining spectra (for velocity, acceleration, or

stress level) can be related to the power input spectrum by the

relations given in Section 3.2.2. In connection with relation

(ll3), note that the quantity Ps_s will still have the same

numerical value, since (at least in the formal analysis) no

power was assumed to be dissipated in the liquid. Hence, if the

surface mass density Ps in relation (113) is to be changed to

the effective surface mass density (Ps ÷ Po/k)' the loss factor

_s must also be simultaneously changed to keep the product

invariant.

3.2.5 Consideration of Forced Response. - With reference

to Figs. 24(a) and 24(b), note that the strength of the

wavenumber spectrum @3(k3) [see relation (25)], and, hence,

of the exciting pressure spectrum ¢ (_,_), decreases as the
P

wavenumber k3 increases. Therefore, the magnitude of the exciting

forces for the HC mass-controlled modes in Fig. 24(a) and for

the HC stiffness-controlled modes in Fig. 24(b) is higher than

that for the corresponding HC resonant modes. The approximate

response calculation for the forced vibration in these and other

similar situations can be performed by taking the suitable

asymptotic form (mass-controlled or stiffness-controlled) of the

appropriate pressure-to-velocity wave admittance H(_,_). Note

that for forced vibration there is no significant power exchange

between the structure and the exciting environment.

For an isotropic cylinder, the contributions Vmass(_ ) and

Vstiffness(_ ) to the surface velocity spectrum owing to the

forced vibration of HC mass-law-controlled modes in Fig. 24(a)

83



and HC stiffness-controlled modes in Fig. 24(b), are approxi-

mately given by

Vmass(co) =, ph2¢f(_)/ps2_ 2,

v4ph2@f 2 2Vstiffness(co) = (CO)/Ps co ,

where v = _a/c_ is the dimensionless frequency. Despite the

higher magnitude of the exciting forces for this forced vibration,

when the numerical values typical for launch-vehicle situations

are substituted in the above estimates, the contribution to

velocity response from the forced vibration is found to be i0 - 20 dB

below the contribution from the resonant vibration. Therefore, as

long as one is interested in vibration transmission and stress

levels, one can safely ignore the consideration of forced or

nonresonant response. For acoustic noise transmission problems,

however, nonresonant response can play a significant role _

3.3 Excitation from a Diffuse Sound Field

3.3.1 Introduction. - Much of the detailed calculation

involved in estimating the structural response to acoustic noise

consists of calculating the modal density and the average

radiation efficiency for the structure. This we have already

accomplished in Section 2. Here, we describe a general procedure

for estimating the structural response in terms of the modal

density and the radiation efficiency. The method is applicable

to an isotropic or orthotropic cylinder or plate, whether fluid-

loaded or not.
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Note that, for the case of structural excitation from a

turbulent boundary-layer pressure field, for frequencies below

the hydrodynamic critical frequency _h J there was always some

resonant vibration pattern on the structure which found a

perfect "spatial match" or coincidence with the excitation field.

This was essentially a "surface" interaction, which generally

dominates over the "edge" interaction, and which can easily be

estimated from the corresponding infinite or "edgeless" structure.

For the present case of structural excitation from acoustic

noise, in a significant frequency range of interest between

the ring frequency _r and the acoustic critical frequency _c' no

such "surface" interaction for resonant vibration is possible.

Any interaction and response in this frequency range must arise

from the effects due to the boundaries and discontinuities on

the structure surface. The analysis on the corresponding infinite

or "edgeless" structure would give an estimate of zero response

in this frequency range.

In the following, we analyze a finite structure with well-

defined boundaries. Our approach is to calculate the response

of a single mode to a reverberant sound field and then extend the

concepts to include groups of structural modes resonating in

different frequency bands.

3.3.2 Structural Response to a Diffuse Sound Field. - If

a structural mode is excited by noise, it loses energy by internal

dissipation and by sound radiation. We subdivide the total

power lost H s accordingly,

_s = _diss + _rad ' (133)

= (IB4)
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Es = M <Vs2> . (135)

Here, Es is the modal energy at resonance, <Vs2> is the mean-

squared modal velocity, M is the modal mass, _ is the natural

frequency for the mode, and ms is the total loss factor for the

mode. Consequently, qdiss' defined by

Ndiss = _dissEs ' (136)

is a measure of the internal losses, and _rad" defined by

Hra d = _qradEs , (13F)

is a measure of the radiation losses or of the modal coupling

to the sound field. Clearly,

ms = _diss + qrad (138)

Previous studies have established that, when the "acoustic

modes" in a diffuse sound field are directly excited by external

sources and the structural modes are excited by interaction with

the sound field, the structural energy will be 35, 42/

E s = Ea qrad/qs (139)
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Here, E is the acoustic modal energy, which can be expressed

a <pa2 >in terms of the mean-squared pressure of the acoustic mode,

the volume V of the space in which the diffuse sound field is

contained (this cancels out later), the characteristic acoustic

impedance pc, and the sound speed c 3__/:

E a = <pa2> V/pc 2 . (140)

Since the sound field is diffuse, we have

Sp(co) : <pa2> na(_O), (i4i)

where na(_ ) is the acoustic modal density and $ (_) is theP

power density spectrum for the free-field acoustic pressure. Note

that the spectrum is "single-sided," -- that is, the range of

the radian frequency variable _ is from zero to infinity. The

modal density na(_ ) is given by 3-_/

n a(_) : _2V/2_2c3 . (142)

We assume the surface of the structure to be large enough

so that the spectrum $ (_) of the pressure measured at the
Pmeas

structure surface (which is also the T'blocked" pressure) is

approximately given by

(_) : 25 (_) .
Pmeas P

(143)
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Therefore,

E = 2 c _ (_)/p2
a Pmeas

(144)

The single-mode response is then given by

<Vs2 > = Ea_rad/Mq s ( 45)

The total resonant-velocity response for the structure is

obtained as the sum of the response for the resonant modes:

V(c_) = (Ea/M)n s(_)b(m) . (146)

Here, V(_) is the velocity spectrum (0 < _ < _), ns(_) is the

modal density for the structure, and _(_) is _rad/qs averaged

over the resonant modes. For the numerical values of interest,

the following approximation is generally found to be quite valid:

_(_) = <qrad>/(<_rad > + _diss ) (147)

Here, <qrad> is the modal radiation loss factor qrad averaged

over the resonant modes. The procedures for calculating ns(_ )

and <qrad> were discussed in Section 2. From relations (144),

(146), and (147), we finally get
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V(_) 2 (_)@Pmeas(_)/pym2= c _(o_)n s
(148)

The spectra for the power input, the acceleration response,

and the stress level can be related to the velocity spectrum

V(m) by relations (113) - (116). For the present case, all the

spectra are defined for the positive radian frequencies only;

therefore, for conversion to third-octave bands, 3 dB should be

subtracted from the right-hand sides of relations (117) - (121).

The measured SPL, and the surface acceleration AL would be given

by

SPL dB re 0 0002 _bar = 129 + I0 logf + i0 log <@ (_)>
m • Pmeas

(149)

and

AL dB re I g = -28.5 + logf + I0 los <A(_)> . (15o)

The above procedure for the estimation of response to

acoustic noise is valid for any of the structural elements de-

scribed in Section 2. Note that, if the structure is loaded

by a liquid, the modal mass M is to be interpreted everywhere

as the total modal mass Mf[relation (66)], which includes the

mass-loading effect due to the liquid also. If the internal

dissipation loss factor _diss is based on the structural mass

only, the effective total loss factor is given by

qs = qrad + _dissM/Mf '
(151)

where M is the structural mass or the "unloaded" modal mass.
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3.4 Excitation by an Oscillating Shock Front

3.4.1 Introduction. - As we saw in Section l, the

fluctuating pressure field associated with an oscillating shock

cannot be spatially homogeneous. Therefore, for analysis of

structural response to oscillating shock, it is necessary to

consider the modal approach for a finite structure. If the

shock front over the structure undergoes a random oscillatory

motion, the portion of the structure near the mean shock position

will experience a fluctuating pressure field. Consequently,

energy will flow from the environment into the structure in

this localized region, and the resulting vibration will be

transmitted to the other parts of the structure. In the following,

we characterize the exciting environment in quantitative terms

and develop procedures for estimating response of an Isotropic

or orthotroplc flat plate or cylinder.

3.4.2 Response of a Cylinder to an Oscillating Shock Front. -

Consider a cylinder of axial length _I and circumference _3 = 2_a.

We assume that the shock front moves In the axial direction xI and

that the mean position of the shock front Is along the circumfer-

ential section midway between the two ends. We also assume that

the shock front Is always "perfectly coherent" in the circumfer-

ential direction -- that Is, the displacement y(t) of the shock

front from Its mean position is always the same along the circum-

ference of the cylinder. The associated pressure field Is assumed

to be

p(_x,t) = 0 for - $1/2 < xI < y(t)

= Ap for y(t) < x I < _i/2 . (152)

The situation is illustrated in Flg. 27.
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We assume the displacement y(t) to be a narrow-band random

Gaussian process with zero mean, center-band frequency _osc'
and root-mean-square value _. Statistical properties for such
a random process are well known 44, 45/. In particular, the

correlation _y(t) for this process is given by

_y(t) = (y(t')y(t' + t)>t,

2 -st
= _ e [(_/_) sin13t + cos13t)] (153)

152 _- _ 2 -c_ 2 . (154-)
OSC

Here, 2_ is the bandwidth of the process y(t).

The modal force Fmn(t) exciting the mode (m,n) of the

cylinder can be obtained by substituting relation (152) for

the pressure field p(_,t) in relation (60). The modal shapes

_mn(_ ) and the normalizing constants for th_ cylinder are given

by relations (57) and (58). Owing to the circumferential

symmetry, Fmn(t) = 0 for nonzero n. For n = O, the correlation

Rm(t ) of the fluctuating part of Fm(t ) [short for Fm0_t )] can

be related to the correlation _y(t) of y(t) as follows:

Rm(t) = G 2 sinh[¢y(t)m2_2/_12]
for m odd

G2[cosh[¢y(t)m2_2/_12]-I ] for m even,

2
G2 = 2(Ap_l_3/m_) exp [-(m_/_l )2] . (155)
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Generally, the shock oscillation frequency is found

to be low (80 Hz or lower). In that case, only the lowest-order

modes (i.e., m = i, 2, 3, etc.) with resonance frequencies in

a similar low range contribute significantly to the response.
For such low-order modes, we can reasonably assume that the

root-mean-square shock displacement is smaller than the modal

wavelength in the axial direction, that is, m_/_ 1 < 1. Under

this assumption, the frequency composition, of the corresponding

modal forces can be described simply. The spectrum Sm(_) for a

modal force [which is the Fourier transform of Rm(t)] in that

case is given approximately by

Sm(_) = <Fro2> Sodd(_)/_os c for m odd

= <Fm2> Seven(_)/_os c for m even

<Fro2> = Rm(O) (156)

The normalized and dimensionless spectra Sodd(_) and Seven(e)

for 2e/_os c = 0.2 are shown in Fig. 28. Sodd(_) also represents
the normalized and dimensionless spectrum for the process y(t).

whereas S (_) peaks at 2_ From aSodd(_) peaks at eosc' even osc"
physical point of view, an odd-numbered mode is excited by a
force with a dominant frequency of _ , and an even-numbered

OSC
mode is excited by a moment with a dominant frequency of 2_ osc

Note that the spectrum given by relation (14) pertains to

the levels of fluctuatin_ pressure due to the random motion of

the shock front. The dashed spectrum shown in Fig. 7 is based on

relation (14) and pertains to the maximum value for these
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fluctuating pressure levels, which is measured at the mean

location of the shock front (_i = Tk)" Relation (14) is derived

in Ref. 20 on the assumption of Poisson statistics for the motion

of the shock front. This assumption does not emphasize the

oscillatory nature of the shock-front motion. In contrast,

Sm(_ ) given by relation (156)represents the spectrum for the

modal forces. This is based on the assumption that the displace-

ment of the shock front is represented by Gaussian statistics

and has a dominant oscillatory behavior. The two alternate

mathematical models are ideally suited to the nature and the

goal of the two distinct analyses. Each model provides an

approximate but adequate representation of the physical situation.

The procedures for determining the masses and the resonance

frequencies for the "modal oscillators" for an isotropic or

orthotropic cylinder have already been discussed in Section 2.

The resonant velocity response Vm(t) for the modal oscillator

corresponding to mode (m,0) can be estimated by assuming the

spectrum for the corresponding modal force to be "smooth"

compared with the modal admittance function. The mean-squared

velocity response for mode is then given by

q

<v m (t)> IrSm((Om)/Mm 2= _m n-m " (157)

Here, Mm is the modal mass, _m the natural frequency, and qm the

total loss factor for the modal oscillator (m,0). Note that the

spectrum Sm(_ ) is "two-sided." The total surface velocity

spectrum for the structure in third-octave bands can be obtained

adding up the contributions <Vm2(t)> from the modessimply by

with resonance frequencies in the same frequency bands. The

remaining output spectra (for power input, acceleration, or stress

level) can be related to the velocity spectrum by the relations

given in Section 3.2.2.
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Note that, since the shock oscillation frequency is quite low

and since the excitation is quite sharply oscillatory, only the first

few modes contribute most of the response. Therefore, it is wise

in this case to abandon the statistical concept of modal density

and to estimate the individual modal response for the first 5

or i0 modes.

Also note that, if the shock oscillation frequency is greater

than one-half the fundamental frequency of the structure, some

low-order modes will be excited at "coincidence and resonance."

The resulting response in that case can be quite high.

3.4.3 Response of A Rectangular Plate to an Oscillating

Shock Front.- Consider a flat rectangular plate of size ($i,$3).

The geometry of the situation can be inferred from Fig.27, by inter-

preting the projected view of the cylinder in Fig. 27(a) as a flat

plate of size ($1,$3).Thus the shock front once again is assumed

to move in the x I direction, with its mean position at x I : O.

Furthermore, the shock front is assumed to be perfectly coherent

over the width $3 of the plate. The associated pressure field p(_,t)

and the properties of the random shock displacement y(t) are also

assumed to be the same as in Section 3.4.2 [relations (152 - (154)].

The modal shapes @mn(_) and the normalizing constants Cmn ,

however, change [see relation (67)]. Owing to the assumed coherence

of the shock front over the width $3 of the plate, only the modes

with odd n (that is, n = i, 3, 5...) are excited. For numerical

values of interest, the modes with n greater than i have consider-

ably higher resonance frequencies than the modes with n = I.

Furthermore, since the shock oscillation frequency is low (generally

even lower than the fundamental resonance frequency for the structure),

only n = 1 modes contribute significantly to the response.

The correlation Rmn(t ) of the fluctuating part of the modal

force Fmn(t ) is still given by relation (155) for R (t) exceptm

that the variable G2(and, therefore, the mean-squared modal force)
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now decreases by a factor of 8/_2n 2. Once again, for low-order

modes (n _ I and m : i, 2, 3, 4 .... ), one can assume that

mc/_ I < 1. Then the power density spectra for the modal forces

are given by relation (156), with the mean-squared values

<Fmn2> _ Rmn(O ). The discussion following relation (156) in

Section 3.4.2 applies equally well for the present case of a

rectangular flat plate.

3.4.4 Influence of Clamped Edges_ and of Additional Membrane

and Buckling Stresses_ on Structural Response to an 0scillatin$

Shock Front. - For excitation from a shock front oscillating at

a relatively low frequency, only a few low-order modes of the

structure contribute significantly to response. At the same time,

any deviations from the idealized conditions (for example,

clamped boundaries instead of simply supported bou_aries for the

structure) show maximum effect for the lowest-order modes. An

approximate but simple way to account for such deviations is to

assume that the modal shapes are still the same as those in the

idealized situation. This may not be too serious an approximation

if the interaction between the oscillating shock and the

structure is restricted to a portion of the structure surface

well inside the structure boundaries. With this approximation,

the deviations from the idealized situation would change only the

resonance frequencies for the low-order modes. The few lowest

resonance frequencies can be determined either experimentally or

by separate analyses. For example, it is well known that the

fundamental frequency for a clamped rectangular plate is

approximately twice the fundamental frequency for a similar plate

with simply supported edges. Once the actual resonance frequencies

for the low-order modes are known, the structural response can be

estimated approximately by using the results of Sections 3.4.2

and 3.4.3.
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